
Computer Vision
Statistical Models for Marr’s Paradigm

Song-Chun Zhu Ying Nian Wu

August 18, 2020

Contents

0.1 Story of David Marr . ix
0.2 Beyond David Marr’s Paradigm . xi
0.3 Introducing the Book Series . xiii

1 Introduction 1
1.1 Goal of Vision . 3
1.2 Seeing as Bayesian Inference: Vision is Ill-Posed and Mostly an Illusion 6
1.3 Knowledge Representation . 7
1.4 Pursuit of Statistical Models . 12

2 Statistics of Natural Images 17
2.1 Image Space and Distribution . 18
2.2 Information and Encoding . 19
2.3 Image Statistics and Power Law . 21
2.4 Kurtosis and Sparsity . 26

2.4.1 High Kurtosis Motivates Sparse Representation . 28
2.5 Scale Invariance . 29

3 Textures 33
3.1 The Julesz Quest . 33
3.2 MRF & Clique-Based Gibbs Models . 35

3.2.1 Markov Random Fields (MRF) . 35
3.2.2 Ising & Potts Model . 36
3.2.3 Gaussian Markov Random Fields (GMRF) . 38
3.2.4 Advanced Models: Hierarchical MRF and Mumford-Shah Model 41
3.2.5 Selecting Filters and Learning Potential Functions 41

3.3 Filters for Early Vision . 41
3.3.1 Correlation & Convolution . 42
3.3.2 Edge Detection Filters . 43
3.3.3 Gaussian Filter . 44
3.3.4 Derivative of Gaussian & Laplacian of Gaussian Filter 45
3.3.5 Gabor Filter . 47

3.4 The FRAME Model . 48
3.4.1 Intuition and the Big Picture . 48
3.4.2 Deriving the FRAME model . 51

3.5 The Texture Ensemble . 62
3.5.1 Ensembles in Statistical Physics . 62

i

3.5.2 Texture Ensemble . 64
3.5.3 Type Theory and Entropy Rate Functions . 65
3.5.4 Equivalence of FRAME and Julesz Ensemble . 69

3.6 Deriving Partial Differential Equations from the MRF and FRAME models 71
3.6.1 Turing Diffusion-Reaction . 72
3.6.2 Heat Diffusion . 72
3.6.3 Anisotropic Diffusion . 73
3.6.4 GRADE: Gibbs Reaction And Diffusion Equations 73
3.6.5 Properties of GRADE . 76

3.7 Conclusion . 78

4 Textons 79
4.1 Distinguishing Textures and Textons . 79

4.1.1 Julesz’s Confusion . 79
4.1.2 Neural Coding Schemes . 80

4.2 Generative Models in Harmonic Analysis . 81
4.2.1 Basis and Frame . 81
4.2.2 Linear Factor Analysis . 82

4.3 Sparse Coding . 82
4.3.1 Image Representation . 82
4.3.2 Olshausen-Field model . 83
4.3.3 A three-level generative model . 85

4.4 Active basis model . 90
4.4.1 Olshausen-Field model for sparse coding . 90
4.4.2 Active basis model for shared sparse coding of aligned image patches 91
4.4.3 Prototype algorithm . 91
4.4.4 Statistical modeling . 93
4.4.5 Shared matching pursuit . 95
4.4.6 Active Appearance Models . 97

4.5 The Sparse FRAME Model . 102
4.5.1 Dense FRAME . 102
4.5.2 Sparse representation . 102
4.5.3 Maximum likelihood learning . 103
4.5.4 Generative boosting . 103
4.5.5 Sparse model . 104

4.6 Compositional Sparse Coding . 105
4.6.1 Sparsity and Composition . 105
4.6.2 Compositional sparse coding model . 106

4.7 Bottom-up filters or top-down basis functions? . 109

5 Gestalt Laws and Perceptual Organization 115
5.1 Gestalt Laws for Perceptual Organization . 115
5.2 Texton Process Embedding Gestalt Laws . 116

5.2.1 Introduction . 116
5.2.2 Background on Descriptive and Generative Learning 119
5.2.3 A Multi-layered Generative Model for Texture . 121
5.2.4 A Descriptive Model of Texton Processes . 123

ii

5.2.5 An Integrated Learning Framework . 127
5.2.6 Effective Inference by Simplified Likelihood . 130
5.2.7 Experiment II: Integrated learning and synthesis 131
5.2.8 Discussion . 133

6 Primal Sketch: Integrating Textures and Textons 137
6.1 Marr’s Conjecture on Primal Sketch . 137
6.2 The Two Layer Model . 138

6.2.1 Structure domain . 138
6.2.2 The dictionary of image primitives . 139
6.2.3 Texture domain . 141
6.2.4 Integrated model . 142
6.2.5 The sketch pursuit algorithm . 142

6.3 Hybrid Image Templates . 143
6.3.1 Representation . 144
6.3.2 Prototypes, ε - balls, and saturation function . 145
6.3.3 Projecting image patches to 1D responses . 146
6.3.4 Template pursuit by information projection . 148

6.4 Example: vector fields for human hair analysis and synthesis 150
6.5 Relations between Primal Sketch and the HoG and SIFT Representations 151

7 2.1D Sketch and Layered Representation 153
7.1 Problem Formulation . 154
7.2 The Variational Formulation by Nitzberg and Mumford . 155

7.2.1 The Energy Functional . 155
7.2.2 The Euler Elastica for Completing Occluded Curves 156

7.3 The Mixed Markov Random Field Formulation . 156
7.3.1 Definition of W2D and W2.1D . 158
7.3.2 The mixed MRF and Its Graphical Representation 160
7.3.3 Bayesian formulation . 161
7.3.4 Experiments . 162

7.4 The 2.1D Sketch with Layered Regions and Curves . 162
7.4.1 Generative models and Bayesian formulation . 164
7.4.2 Bayesian formulation for probabilistic inference 167
7.4.3 Experiments . 169

8 2.5D Sketch and Depth Maps 171
8.1 Marr’s Definition . 172
8.2 2.5D Sketch from Primal Sketch — Shape from Stereo . 173

8.2.1 The Image Formation Model . 175
8.2.2 Two Layer Representation . 179
8.2.3 The inference algorithm . 187
8.2.4 Example results . 190

8.3 2.5D Sketch from Primal Sketch — Shape from Shading 191
8.3.1 Overview of the Two-Layer Generation Model . 193
8.3.2 Results . 193

8.4 2.5D Sketch from Direct Estimation . 196

iii

8.4.1 Dataset . 196
8.4.2 Model . 196
8.4.3 Results . 199

9 Learning by Information Projection 201
9.1 Information projection . 201

9.1.1 Orthogonality and duality . 202
9.1.2 Maximum Likelihood Implementation . 203
9.1.3 The Minimax Learning Framework . 204
9.1.4 Model Pursuit Strategies . 205

9.2 A Unifying View . 206
9.2.1 Relation to Discriminative Learning . 206
9.2.2 Learning FRAME . 206
9.2.3 Learning Shape Patterns . 208

10 Information Scaling and Regimes of Models 211
10.1 Image Scaling . 211
10.2 Perceptual Entropy . 219
10.3 A Continuous Spectrum . 222
10.4 Two Coding Schemes . 222
10.5 Perceptual Scale Space . 224
10.6 Perceptibility, Metastability, and the Energy Landscape . 225

11 Image Models with Multilayer Neural Networks 231
11.1 Deep FRAME . 231

11.1.1 From FRAME to deep FRAME . 234
11.1.2 ConvNet filters . 239
11.1.3 FRAME with ConvNet filters . 240
11.1.4 Learning and sampling . 240
11.1.5 Learning a new layer of filters . 242
11.1.6 Deep convolutional energy-based model . 243
11.1.7 Hopfield auto-encoder . 246
11.1.8 Multigrid sampling and modeling . 250
11.1.9 Adversarial interpretation . 252
11.1.10 Short-run MCMC . 253

11.2 Generator Network . 258
11.2.1 Factor analysis . 259
11.2.2 Non-linear factor analysis . 259
11.2.3 Learning by alternating back-propagation . 260
11.2.4 EM, density mapping, and density shifting . 263
11.2.5 Extracting appearance and geometry, nonlinear generalization of the AAM model . . 264
11.2.6 Dynamic generator model . 269
11.2.7 Unsupervised clustering and semi-supervised classification 274
11.2.8 Short-run inference dynamics . 275

11.3 Stochastic Adversarial Defense using Deep Frame . 277

iv

12 A Tale of Three Families: Discriminative, Generative and Descriptive Models 281
12.1 Introduction . 281
12.2 Non-hierarchical linear forms of the three families . 282

12.2.1 Discriminative models . 282
12.2.2 Descriptive model . 283
12.2.3 Generative models . 286

12.3 Interactions between different families . 290
12.3.1 Discriminative learning of descriptive model . 290
12.3.2 DDMCMC: integration of discriminative and generative models 290

12.4 Hierarchical forms of the three families . 291
12.4.1 Recent developments . 291
12.4.2 Discriminative models by convolutional neural networks 292
12.4.3 Descriptive models . 294
12.4.4 Introspective learning . 295
12.4.5 Generative models . 296

12.5 Variational, adversarial and cooperative learning . 299
12.5.1 Variational auto-encoder . 299
12.5.2 Adversarial contrastive divergence . 301
12.5.3 Integrating variational and adversarial learning by divergence triangle 302
12.5.4 Cooperative learning . 305
12.5.5 Conditional learning via fast thinking initializer and slow thinking solver 307

12.6 Divergence triangle . 308
12.7 Flow-based model and flow contrastive estimation . 308
12.8 Discussion . 308
12.9 Model and algorithm . 310

12.9.1 Model . 310
12.9.2 Maximum likelihood . 312
12.9.3 Short-run MCMC . 313
12.9.4 Algorithm . 313
12.9.5 Theoretical understanding . 314

13 Discussion 317

Index 317

Bibliography 319

v

About the Authors

Zhu and Wu studied at the University of Science and Technology of China (USTC), Hefei in the late 1980s,
majoring in computer science. They first met in April of 1992 at the front gate of the US consulate in
Shanghai, while applying for their F1 student visas to attend Harvard University. At the Harvard Graduate
School of Arts and Sciences, Zhu studied under Dr. David Mumford in Computer Science and Wu studied
under Dr. Donald Rubin in Statistics, and they became roommates and collaborators. Their first joint project
was the FRAME model for texture and the minimax entropy learning theory, published in 1997. After
graduation, Zhu and Wu continued to carry out research on textures, textons, and sparse coding models.
They reunited in 2002 as tenured faculty at the University of California, Los Angeles (UCLA), continuing
work on the primal sketch model, information scaling phenomena, and on connecting these classical models
and others to deep neural network structures. They received the Marr prize honorary nomination twice, in
ICCV1999 and ICCV2007, for their modeling work.

The authors believe that computer vision can be studied as a science, despite the plethora of task-specific
machine learning models and associated ad-hoc methods that would seem to suggest otherwise. Many of
these task-specific models with specialized solutions do not contribute to a greater unified framework for
vision. Inspired by the tireless pursuit of physicists over the past 300 years for a general unified theory of
the physical universe, across all space and time scales, the authors believe a unified framework for computer
vision is certainly possible, and it should be able to understand any potential pattern or object captured in
sensory signals.

Zhu started his search for a unified theory of intelligence while in college, after encountering the book
“Vision: A Computational Investigation into the Human Representation and Processing of Visual Informa-
tion,” written by MIT computational neuroscientist David Marr. At the time in the late 1980s, Zhu was a
student helper at a cognitive science lab at USTC. The book is considered the first attempt to outline a com-
putational paradigm for vision, and it inspired Zhu to study computer vision with Dr. David Mumford, who
also had interest in pursuing a mathematical framework for vision and intelligence. The 1990s was char-
acterized by a transition from models based on logic and symbolic reasoning to models based on statistical
modeling and computing. During this time and since then, Wu has brought valuable expertise in statistics to
the team. By the late 1990s, Zhu and Wu had adopted a Bayesian view and introduced statistical methods
to the computer vision community.

Notably, the pursuit of a unified framework for computer vision dates back to Ulf Grenander, a pioneer
who launched General Pattern Theory in the 1960-70s while at the Division of Applied Math at Brown
University. Zhu studied pattern theory as well, with a group as a postdoc, and benefitted greatly from
interactions with this group. On this note, an underlying goal of this book is to apply the methodology of
general pattern theory to formulating concepts in Marr’s paradigm.

At the Center for Vision, Cognition, Learning, and Autonomy at UCLA, Zhu and Wu have jointly
supervised many Ph.D. students and postdocs who have both contributed their thesis work as examples in
this book and assisted with editing.

vii

Preface

“The highest activity a human being can attain is learning for understanding, because to under-
stand is to be free.”

– Baruch Spinoza, Philosopher, 1632-1677.

0.1 Story of David Marr

This textbook is intended for researchers and graduate students in statistics, computer science, and engi-
neering. Based on contributions from multiple authors in the past 30 years in the Department of Statistics
and the Department of Computer Science at the University of California, Los Angeles, it may be used as a
reference in the fields of computer vision and pattern recognition, machine learning, graphics, robotics, and
artificial intelligence. The first book of a three-part series, this book is offered as a tribute to pioneers in
vision, such as Béla Julesz, David Marr, King-Sun Fu, Ulf Grenander, and David Mumford. In this book,
the authors hope to provide foundation and, perhaps more importantly, further inspiration for continued
research in vision.

An overarching goal of the three-book trilogy is to provide unifying mathematical foundations for re-
search within vision, cognition, language, and autonomy in artificial intelligence. With the rise of deep
learning, applications of neural networks continue to grow but still very much at the expense of understand-
ing how these models truly work or generate their solutions. It is all-to-common to refer to neural networks
as “black boxes,” representing a common lack of understanding in the community. In an effort to guide
wise uses of neural networks, and to promote the unification of various artificial intelligence theories under
a common framework, the vision models in this book take inspiration from many authors in artificial intel-
ligence and other fields, such as statistics, physics, neuroscience, and psychology. Models in this book may
establish more carefully designed uses of neural networks, or in some cases may replace neural networks
altogether, in comparison to some competing models in the literature. Similar to physics, vision models in
the book are constructed solely based on empirical truths exhibited by data, avoiding any assumptions as a
means to provide the most universality.

David Marr is well-known for pioneering a resurgence of interest in computational neuroscience and
for integrating the fields of psychology, neurophysiology, and artificial intelligence in his research on visual
processing. After he passed away of leukaemia at the age of 35, his work was published posthumously
in 1982 in Vision: A computational investigation into the human representation and processing of visual
information [166]. Although Marr published early works on the cerebellum in 1969, neocortex in 1970, and
hippocampus in 1971, he is most well-known for his research in vision. He laid foundations for continued
studies in vision for various fields, such as computational neuroscience and computer vision.

ix

Referred to as Marr’s tri-level hypothesis, Marr viewed vision as an information-processing system that
should be understood at three unique, but complementary, levels: the computational level, the algorithmic
or representational level, and the implementational or physical level. At the computational or mathematical
level, one seeks to understand the problems the visual system solves and, in a similar sense, why it solves
them. At the algorithmic or representational level, one seeks to understand how the visual system solves
its problems, i.e., the representations it uses and the algorithmic processes it employs to manipulate those
representations. At the implementational or physical level, one seeks to understand how the visual system
is physically realized. In the same spirit as Marr’s tri-level hypothesis, in this book vision problems are
addressed with respect to each of the computational, representational, and implementational levels. Cru-
cially, vision problems may be studied at the computational and representational levels, independent of the
implementational level, which is often realized through neural networks [168].

Marr believed that a deep understanding of the brain entails an understanding of the problems it en-
counters, i.e., the input, and how it solves them, i.e., the steps taken to produce the output. As his interests
gradually evolved from the brain to visual processing, he began to treat vision similarly. He described
vision as a computational process that takes as input a two-dimensional array on the retina and outputs a
three-dimensional description of the world. His three stages of vision, depicted in Fig. 8.1, include a primal
sketch, a 2.5D sketch, and a 3D model. A 2.1D sketch was also proposed by Nitzberg and Mumford [184].

A primal sketch extracts key components of a scene, such as simple edges and regions. Textures and
textons are constituent parts of a primal sketch, which correspond to early stages of human visual perception,
i.e., the first visual phenomena noticed by humans when viewing an object. A 2.5D sketch reflects textures
and depth. The 2.1D and 2.5D sketches correspond to mid-level vision. In a complete 3D model, a scene is
visualized in a continuous 3D map. The 3D model corresponds to high-level vision and provides an object-
centered perspective, while the primal, 2.1D, and 2.5D sketches provide human, view-centered perspectives.

Figure 1: Stages of vision according to Marr’s paradigm

Various research influenced Marr’s book Vision, such as psychology experiments by Béla Julesz on
textures and textons, neuroscience discoveries in edge detection and filters, the random dot stereopsis by
Julesz, the shape-from-shading theory from Berthold K. P. Horn, and research on generalized cylinders and
3D representations. Various works facilitated the transitions from primal sketch to 2D sketch to 2.5D sketch
to a complete 3D model. For a primal sketch formulation, work on textures and textons paired with work
on edge detection and filters provided crucial foundations. For the 2.5D sketch, the random dot stereopsis
from Julesz and the shape-from-shading theory by K. P. Horn facilitated the modeling of textures and depth.
Lastly, for the 3D model, work on generalized cylinders and 3D representations made it possible to model

x

scenes in continuous, 3D maps.
As a whole, Marr’s work proposed a holistic framework for understanding vision and touched on broader

questions about how cognition may be studied. Thirty years later, the main problems that occupied Marr
remain fundamental, open problems in the study of vision. This book may be understood as a bridge between
Marr’s theory of vision and the modern treatment of computer vision with statistical models. It explores deep
connections between Marr’s ideology and neuroscience discoveries, while solidifying such discoveries with
mathematical models.

The unifying mathematical foundations expounded in this book also counteract a “big data for small
tasks” paradigm that dominates the deep learning community today. This paradigm refers to the practice of
exploiting massive amounts of data for highly specific tasks and essentially repeating this process for each
new task. A great deal of research readily falls susceptible to such a “task trap,” such that solutions often
do not contribute to a greater, unified framework for vision. The methods in this book are presented under a
unified framework, with the hope that it helps advance progress toward a more integrated vision community.

Given the wide variety of artificial intelligence methods used today on similar problems, it is clear much
effort is devoted by the community as a whole to often entirely different research approaches. Undoubtedly,
ingenuity and novelty contribute greatly to research advancement, but the community as a whole could work
more in harmony and hence more efficiently if it adopted a common ground, or overarching framework, for
general-purpose research in vision. This type of maturation for the field of vision is comparable to a process
other academic fields have undergone and is arguably long overdue.

0.2 Beyond David Marr’s Paradigm

This book provides mathematical foundations or tools for many of Marr’s concepts. Notably not avail-
able during Marr’s time, they include Markov random fields; the FRAME (Filters, Random Fields, and
Maximum Entropy) model [280], i.e., a predecessor of the energy-based model (EBM); generative models;
sparse coding models [188]; various inference algorithms; and deep neural networks. Textures and textons
are fundamental elements of Marr’s paradigm, in particular for the primal sketch. For textures, Markov
random fields and the FRAME model, which utilizes Markov random fields, may be used to mathematically
formulate a Julesz ensemble. For textons, generative models and sparse coding models provide essential
mathematical formulations.

Béla Julesz was a psychologist at Bell Labs and a professor at Rutgers best known for his work on
random dot stereo and texton theory. Although both theories have their weaknesses, his work inspired many
thinkers, including Marr to establish the field of computational vision. Providing a mathematical definition
for a Julesz ensemble for textures, the FRAME model offers the following conclusion: the limit of the
FRAME model, as an image domain grows to infinity, is a Julesz ensemble. Let us begin to understand this.

A Julesz ensemble Ω(h) is the limit of an equivalence class ΩD(H) as D → Z2 under some boundary
conditions, in which D is the image domain and Z2 is the entire image space. An equivalence class ΩD(H)
is defined as ΩD(H) = {I : h(I) ∈ H}, in which I is the image and h = (h(i) : i = 1, 2, ..., k) is a set of
normalized statistics for images on a finite lattice. As the image lattice D for the equivalence class ΩD(H)
of images grows to infinity Z2 in a 2D plane, statistical fluctuations diminish and the image set becomes
deterministic. Thus, the Julesz ensemble Ω(h), which is the limit of the equivalence class as the image
lattice grows to infinity, may be defined by a simple uniform distribution q(I;h) = 1/|Ω(h)| for I ∈ Ω(h)
and q(I;h) = 0 otherwise. Hence, the Julesz ensemble provides a definition of texture on a 2D plane that is
associated with a uniform distribution q(I;h).

The FRAME model provides a definition of texture on a finite lattice that is associated with a condi-
tional distribution p(I;β), in which β are 1D potential functions for the selected filters of the model. The

xi

distributions of the FRAME model and the Julesz ensemble are indeed consistent with each other, reflective
of the fact that both models respect the minimax entropy principle. The minimax entropy principle both
minimizes and maximizes entropy in a two-step learning process that (1) chooses informative features, or
statistics, to minimize entropy, i.e., the log-volume or uncertainty of the system, and (2) under these con-
straints, chooses a distribution that maximizes entropy, i.e., minimizes bias. To reiterate the conclusion of
the FRAME model now with more vocabulary, the limit of a FRAME texture model p(ID|I∂D;β), in which
I∂D is the neighborhood of pixels around the pixel of interest as an image domain D grows to infinity Z2,
is a Julesz texture ensemble f(I;hc), in which c represents a concept.

To summarize, the equivalence of the Julesz ensemble and the FRAME model follows from the fol-
lowing theorems: (1) for a very large image from the Julesz ensemble, I ∼ f(I;hc), any local patch of
the image ID, given its neighborhood I∂D, follows a conditional distribution specified by a FRAME model
p(ID|I∂D;β), and (2) as the image latticeD grows to infinity Z2, f(I;hc) is the limit of the FRAME model
p(ID|I∂D;β) in the absence of a phase transition.

So although the FRAME model is defined on a finite lattice D, as this lattice D grows to infinity Z2, it
may be shown mathematically that the FRAME model generalizes to the Julesz ensemble. This demonstrates
an important relationship between conceptualization and modeling; concepts by nature are defined on an
infinite domain but in practice can only be modeled on a finite domain. That is, concepts are inherently
defined by the collection of all their instances in the universe, but realistically they can only be modeled,
or represented, using a finite set of these instances. It is impossible to have access to all the data in the
universe for a particular concept. A texture defined on an infinite lattice Z2, modeled by hc according to a
Julesz ensemble f(I;hc) defined on a finite lattice D, could ultimately be modeled by, e.g., the 1D potential
functions β and filters of the FRAME model p(ID|I∂D;β).

For modeling textons, sparse coding models and active appearance models (AAM) have found great
success. Sparse coding states that objects may be represented by the strong activation of a relatively small
set of nodes, or neurons. It is motivated in part by research in biological vision. For example, Huber
and Wiessel in the 1960s performed experiments on cats to record the activations of cortical cells in the
V1 section of the mammalian brain. It was observed that bars of light oriented mostly vertical activated a
particular set of neurons in the V1 section of the brain, while the same bar of light oriented in other directions
failed to activate the same neurons. In another neurophysiological experiment, a neuron was recorded to
selectively fire only to images of Jennifer Aniston, inspiring a sparse coding scheme called grandmother cell
coding. Furthermore, some neurons referred to as mirror neurons fire not only when performing an action,
but also when observing other subjects perform the same action. In general, one of the striking observations
about physiological recordings from sensory cortical areas of the brain is the difficulty of finding stimuli
that effectively activates some given neurons. These difficulties reflect the narrow functionality of cortical
neurons which, given the incredibly large number of them, suggests that a sparse coding system may be in
place in the brain.

Field [62] performed experiments on the primary visual cortex to suggest that basis functions limited in
both space and frequency domains, such as Gabor functions, maximize sparseness when applied to natural
images. Olhausen and Field [187] give examples of sparse coding in other brain regions. In [188], Olhausen
and Field defined an explicit objective function that promoted both high sparseness and low reconstruction
error. The minimization of this function on natural images leads to a set of basis functions that resemble
localized receptive fields of simple cells in the primary visual cortex. Sparse coding is closely related to
independent component analysis [14] and under certain conditions they are equivalent.

Sparse coding is also closely related to active appearance models (AAM), another mathematical tool
for defining textons. An AAM is a vision algorithm for matching a statistical model of object shape and
appearance to a new image. It is related to the active shape model (ASM), for which a disadvantage is that it

xii

only uses shape constraints, together with some information about the image structure near the landmarks.
The ASM does not take advantage of all available information, e.g., texture across the target object, which
can be modeled using an AAM.

Various inference algorithms and deep neural networks, also methods not available during Marr’s time,
are widely used throughout this book. Of course, the vision community has seen incredible success in
recent years due to advances in deep learning, but as mentioned before, research efforts in vision are often
devoted to entirely different approaches. In this sense, one could argue that the soul or direction of vision
has been lost to some degree, and the field could gain a great deal by adopting more common mathematical
grounds. In an effort to recapture the soul of vision, this book carefully establishes mathematical foundations
for general-purpose research in vision by examining all theories in the literature, beginning with Marr’s
paradigm and progressing up to the most recent uses of neural networks.

0.3 Introducing the Book Series

Hence, introduced in this book are David Marr’s paradigm and various underlying statistical models for
vision. The mathematical foundations herein integrate three regimes of models (low-, mid-, and high-
entropy regimes) and provide essential foundation for research in visual coding, recognition, cognition,
and reasoning. Concepts in this book are first explained for understanding and then supported by findings
in psychology and neuroscience, after which they are established by statistical models and further linked
to research in other fields such as physics. A reader of this book will gain a unified, cross-disciplinary
view of artificial intelligence research in vision and will accrue knowledge spanning from psychology to
neuroscience to statistics.

The second book in the series defines a stochastic grammar for parsing objects, scenes, and events,
posing computer vision as a joint parsing problem. It summarizes research efforts over the past 20 years
that have worked to extend King-Sun Fu’s paradigm of syntactic pattern recognition. Similar to David Marr,
King-Sun Fu was a pioneer and influential figure in the vision and pattern recognition community.

The third book discusses visual commonsense reasoning, including subjects such as functionality, physics,
intentionality, causality, and values. The third book connects vision to cognition and artificial intelligence.

The authors would like to thank many current and former Ph.D. students at UCLA for their contributions
to this book: Erik Nijkamp, Eric Fischer, Jonathan Mitchell, Linqi Zhou, Mitchell Hill, Yaxuan Zhu, and
Tianfu Wu. Erik Nijkamp, especially, has worked extensively on polishing the manuscript and writing
Chapters 10 and 11. The authors would also like to acknowledge the support of DARPA, ONR MURI
grants, and the NSF.

xiii

1

Introduction

A primary aim of this book is to pursue unified knowledge representation for vision. In a world in which
technology generates immense amounts of data from a wide spectrum of sources, it is of growing importance
to establish a common framework for knowledge representation, learning, and discovery. A current problem
in artificial intelligence is how to acquire truly massive amounts of knowledge, akin to the faculty of common
sense in humans, from raw sensory signals and, moreover, use this knowledge for inference and reasoning.
In this book, the vision models presented for acquiring such knowledge are based most fundamentally on
statistical properties discovered for natural images over the past several decades. Similar to models in
physics, models are advanced based on empirical grounds, such as discovering additional patterns in data.
In this way, models stay free of bias.

Discriminative modeling approaches are not discussed in this book in-depth. In statistical classification,
two main approaches exist: discriminative and generative modeling. In discriminative modeling, the condi-
tional probability of a target Y is modeled given an observation x, i.e., P (Y |X = x). Often, the value of
a target variable Y is determined by training a model on thousands of examples. A discriminative classifier
may perform well at discriminating between, e.g., chairs and non-chairs, but does it truly understand the
concept of a chair? Consider adversarial attacks in the literature, in which an image that a discriminative
classifier can otherwise correctly classify with a high degree of certainty is injected with a small amount
of noise, in many cases barely perceptible to a human, and the predicted class is entirely different, e.g., a
bus instead of a chair. This behavior demonstrates that a discriminative model does not actually learn the
concept of a chair as a human does – it only learns to discriminate between chairs and non-chairs using
whatever obscure image features it may prefer.

In cases in which discrimination is not the ultimate goal, generative modeling approaches, explored in
this book, facilitate the construction of models more representative of human learning. In generative mod-
eling, given an observable variable X and a target variable Y , the joint probability distribution P (X,Y) is
modeled. From this, the conditional probability P (Y |X = x), modeled directly in discriminative modeling,
is computed. Generative modeling is more indirect but also more probabilistic in comparison to discrim-
inative modeling, allowing more domain knowledge and probability theory to be applied. In this way,
generative models better represent human learning. For example, with prior domain knowledge encoded, a
generative model can generalize knowledge to new but related tasks. And this is akin to human learning;
a human may be able to intuit, for example, how to make orange juice with the prior knowledge of how to
make lemonade.

After discussing statistical properties discovered for natural images in Chapter 2, the most basic units of
visual perception, textures and textons, are introduced in Chapters 3 and 4, respectively. A texture could be
sand, or the thousands of leaves of a tree viewed from afar, as in Fig. 1.1, for which individual components in

1

Figure 1.1: One can observe, as an example of texture, the tree leaves in the background and, as an example
of textons, the edges created by tree trunks in the foreground.

preattentive vision are not disentangled. Preattentive vision is characterized as human vision before focusing
on any specific region of some visual stimuli. A texton, or a “token” as referred to by Marr, can be thought
of as a most basic element, like a bar, edge, corner of an eye, or trunk of a tree as in Fig. 1.1. Textons
form the structural part of an image and object boundaries. Note that the same object may be perceived
as textons or texture, depending on potential viewing distance or focal point, and in natural scenes these
two entities are seamlessly interweaved. Following David Marr’s insight, these two modeling components
may be integrated to form a generative image representation called primal sketch, which he referred to as a
“symbolic” image representation in terms of image primitives. Primal sketch is discussed further in Chapter
6, after a discussion of gestalt laws and perceptual organization, which naturally follows from Chapter 4 on
textons.

Marr defined different stages of vision, starting from a 2D visual array on the retina to a 3D description
of the world. His stages of representation include a primal sketch, a 2.1D sketch, a 2.5D sketch, and a 3D
model. The first two stages perform separation between four main factors known to influence perceived
visual intensity: geometry (shape and position), reflectance of visible surfaces, illumination, and viewpoint.
A primal sketch extracts fundamental components of the scene, like edges and regions, and it looks like
a pencil sketch. In a primal sketch, geometric structures, pixel intensity changes, and illumination effects
are detected. A primal sketch captures spatial layout by using textons, such as edges, bars, and blobs. A
2.1D sketch introduces layered representations of the input image and is discussed in Chapter 7. A 2.5D
sketch, discussed in Chapter 8, represents orientation, depth, and textures, considering distance from the
viewer and discontinuities in depth and surface orientation. Both primal and 2.5D sketches are viewer-
centered perceptions. In a 3D model, the scene is visualized in a continuous 3D map, as an object-centered
perception. The 3D representation describes shapes and their organization using a hierarchical organization
of volumetric and surface primitives. Marr’s stages of visual perception serves as a basis for further analyses
in the book.

In Chapter 9, information projection is introduced as a generic framework for learning a statistical
model as an approximation to the true data distribution. In Chapter 10, information scaling and regimes
of models are discussed, including entropy, metastability, and energy landscapes. In Chapter 11, image
models with multilayer neural networks, such as Deep FRAME, the Hopfield auto-encoder, and short-run

2

MCMC (Markov Chain Monte Carlo) are presented. In Chapter 12, three main families of machine learning
models, i.e., discriminative, generative, and descriptive models, are further examined. Chapter 13 contains
a summary of some of the main themes in this book.

1.1 Goal of Vision

Figure 1.2: Scenes and events may be understood in terms of a parse graph. From a single image, a dense
3D scene may be reconstructed, estimating camera parameters, materials, and illumination. The scene may
be parsed hierarchically in terms of relations, intents, beliefs, attributes, and fluents. The actions of agents
may be predicted over time and hidden object states, e.g., water boiling inside a metal kettle, which humans
can naturally infer from the image, may even be recovered.

In the parse graph in Fig. 1.2, there can be several types of nodes including scenes and objects, minds
and intents, hidden objects, actions, imagined actions, attributes, and fluents, i.e., how objects change over
time. Nodes are organized in a tree-like hierarchical structure with potential connections between sibling
nodes. Parse graphs for knowledge representation in vision will be discussed in greater detail in the second
book, but for now it may be understood that it involves parsing scenes and events in a picture, or a video
sequence, into nodes such as in Fig. 1.2.

These nodes may be represented with words one might use to describe them in natural language, e.g.,
“backpack” or “vending machines,” or they may be represented with “words” that are not really words at all
– perhaps a symbol, number, some other character, an expression in sign language, or a facial expression.
Either way, for simplicity, the descriptors of these nodes are referred to as words. They can be thought of
as visual words in the sense that even a primate, for example, could have a word for a node, even though it

3

is not endowed with a capacity for language. Sometimes in this book, words are referred to as symbols or
concepts, but this is only to aid with explanation depending on the context.

A common misconception is that concepts are encoded explicitly in pictures. The raw pixel values of
a given picture do not directly correlate to, or represent, any concepts. Consider, for instance, a grayscale
image of 1000×1000 pixels, which may be represented as a 1000×1000 table, a portion of which would
look similar to Fig. 1.3. For a color image, each table entry would contain three numbers, indicating the
intensities of the colors red (R), green (G), and blue (B). Nowhere in this collection of numbers can an
explicit representation of a concept such as a person, table, or chair be found. They have to be inferred
in a sophisticated manner from the collection of numbers representing the image. Visual computation is a
daunting task for computers, just the same as it is for humans. In fact, half of the human brain is devoted
to visual computation, and most of the brain’s activities that involve cognition and reasoning are based on
visual stimuli.

Figure 1.3: An image is merely a collection of numbers indicating the intensity values of the pixels.

At this stage, researchers have yet to grasp how the so-called “signal to symbol” transition is realized,
i.e., how concepts are inferred and ultimately learned from visual stimuli. In order to answer this question,
the relationship between concepts and image patches, such as the one shown in Fig. 1.3, needs to be better
understood, as well as how different concepts relate to one another. The relationship between images and
concepts as it relates to modeling is explored in-depth in Chapter 2.

In Vision, David Marr stated, “Vision is the process of discovering from images what is present in the
world, and where it is.” The parse graph in Fig. 1.2 depicts “what” objects are present in the image and
“where” they are spatially, relative to other objects. The distinction between “what” and “where” in vision
is noteworthy. The ventral pathway in the brain is thought to account for “what” objects humans see and
the dorsal pathway for “where” humans see them. The notion of a division between a ventral and dorsal
visual stream has been an essential principle of visual processing since David Milner and Melvyn Goodale
published the two-streams hypothesis in 1992.

The two-streams hypothesis argues that humans have two distinct visual systems. After visual infor-
mation exits the occipital lobe, it follows two pathways, or streams. The ventral pathway, or “vision-for-
perception” pathway for “what” humans see, leads to the temporal lobe, which is involved with object

4

identification and recognition. This pathway is believed to mainly identify and discriminate between shapes
and objects. The dorsal pathway, or “vision-for-action” pathway, leads to the parietal lobe, which is involved
with processing objects’ spatial locations. This pathway has been tied to movements such as reaching and
grasping, which are based on evolving spatial locations, shapes, and orientations of objects. Understanding
the difference between the two visual pathways, the ventral pathway for perception and the dorsal pathway
for action, is useful knowledge for vision research and for understanding the inspiration behind theories
presented later on.

Figure 1.4: The dorsal pathway is responsible for the spatial aspect of vision, i.e., “where” humans see
objects. The ventral pathway is responsible for the main content of vision, i.e., “what” objects humans see.

Another consideration for vision research that must be accounted for is the fact that human vision is
often task-driven. After viewing an instructional video about how to make watermelon juice, one could
most likely reenact the process, including chopping watermelon, blending it, and so forth. The physics and
the functionality of the objects, and potentially hundreds of other subtasks involved in making the juice,
may be easily understood. Humans additionally understand the causality and how to, e.g., switch the order
of the steps without affecting the final result. From a small amount of data, i.e., the instructional video in
this case, humans can absorb a massive amount of information, forming what is actually just referred to as
common sense. Humans possess this remarkable ability because vision is incredibly task-driven, absorbing
specific information from complex visual stimuli.

Thus, the faculty of common sense, which forms part of the prior knowledge each human possesses,
ultimately entails an understanding of physics, functionality, causality, intentionality, and utility, amongst
other properties of a scene. Pursuing holistic knowledge and learning reminiscent of prior knowledge and
learning in humans may be referred to as the “small data for big tasks” paradigm. This is where efforts are
concentrated in this book. Many avenues in deep learning today, unlike human learning, depend on massive
amounts of data to learn highly specific tasks, such as the task of making watermelon juice or identifying a
person from his or her face in facial recognition. This assumes no prior knowledge and this type of learning
is not generalizable. As mentioned previously, this contrasting and all-to-common paradigm in deep learning
may be referred to as the “big data for small tasks” paradigm.

As a given task or purpose very much influences the interpretation of visual stimuli to form knowledge,
similar behavior should be exhibited by vision models. Accordingly, in this book the optimal model and
knowledge representation of some visual data depends not only on the data but also on the relevant task.
Here, a contrast may be made with the field of physics. In vision, there are subjective, in addition to
objective, considerations that guide the formation of models. As a vision model seeks structure in the data,
i.e., an image space, the optimal structure or architecture of the model depends on its given purpose. As an
example, the hierarchical structure of an And-Or-Graph depends on its purpose, such that it evolves as the

5

purpose of the model evolves.
As mentioned, vision models should also generalize well. Although excellent for a specific task, dis-

criminative modeling approaches clearly lack generalization, which does not reflect human learning. Again,
a human could likely infer how to make orange juice after learning how to make lemonade or watermelon
juice. Or a human could infer how to crush a walnut with a book after observing someone crush it with a
hammer. Humans have the ability to generalize knowledge to novel but similar tasks, often after learning
from just one example. The generative modeling approach offers the tools to begin to mimic this incredible
learning ability.

Humans generalize knowledge well primarily due to prior knowledge and imagination, amongst other
faculties. From birth, humans continually gain a better understanding of space, time, causality, functionality,
and other features of the world, utilizing that knowledge each time a new task is learned. As humans learn,
they add to their prior knowledge, in this way creating a continual accumulation of it. With the imagination,
humans have the ability to extrapolate prior knowledge to imagined future or hypothetical tasks, a powerful
tool for generalizing knowledge.

1.2 Seeing as Bayesian Inference: Vision is Ill-Posed and Mostly an Illusion

Clearly, the way in which humans form and represent knowledge from visual stimuli is complex and relies
on more than just vision—it is dependent on prior knowledge, imagination, and in general the mind, or
agent, that perceives. In fact, every image has literally infinite interpretations, and humans must derive
only one or two meaningful interpretations for each one. Vision, in this sense, is under-constrained and
necessitates some form of guessing by the agent, using prior knowledge. Images, by themselves, lend
minimal information. This is an important point and essentially what it means for vision to be ill-posed
and mostly an illusion. Interpretation of visual stimuli is largely independent of the visual stimuli itself—it
depends on the agent’s prior knowledge and imagination.

It has been shown that a form of top-down processing performed by the visual system also contributes
greatly to visual interpretation. Top-down processing makes use of global information propagation, exploit-
ing high-level knowledge possessed by the agent. The agent considers high-level contextual information
and performs top-down inferential reasoning based on prior knowledge, both innately acquired through evo-
lution and learned through experience. With top-down processing, the agent may form an interpretation of a
visual stimuli, even if the stimuli was only partially perceived or perceived poorly, e.g., due to poor lighting
conditions or quick movement. To give an example in vision, top-down processing may help one intuit
the object or scene of a partially completed puzzle, although only portions of what typically represent the
object or scene are present. To give an example in language, top-down processing eases the understanding
of sloppy handwriting given complete sentences, as opposed to only isolated words, as surrounding words
provide context to aid understanding. With the role of top-down processing in the visual system, top-down
architectures have become paramount to the design of learning and inference algorithms in vision.

Given prior knowledge, a basic assumption since the time of Helmholtz’s research in the 1860s is that
a given visual input may be represented as the most probable computed interpretation of an image. To
give a Bayesian formulation for vision, let I be an image and pg be a semantic representation of the
world. The most probable representation pg∗ of the image is defined as pg∗ = arg maxpg∈Ωp(pg|I) =
arg maxpg∈Ωp(I|pg)p(pg). To obtain the most probable representation pg∗, it is necessary to sample from
the posterior p(pg|I) and obtain candidates (pg1, pg2, ..., pgk) ∼ p(pg|I). This is a crucial point—sampling
from the posterior probability lends the possible visual interpretations. The result of this process, pg∗,
represents the most probable semantic representation of the image and the visual interpretation of the agent.

The quality of the prior knowledge of a model may be judged using a method referred to as analysis

6

by synthesis, based on synthesized examples. Analysis by synthesis can be compared to a Turing test as a
way to judge the humanlike thinking capability, or intelligent behavior, of an artificial intelligence model.
In a Turing test, a subject asks questions to two different agents, one a machine and the other a human,
and the machine is determined to be more humanlike the more uncertain the subject is in identifying the
human from the machine, based on each of their responses. Thus, the machine does not need to have correct
responses; it merely needs to respond like a human, to perhaps fool the subject into thinking it is, in fact, the
human. The analysis by synthesis method may also be used to judge humanlike thinking capability, but in
a way that does not depend on input, such as a subject asking questions. This eliminates the possibility of
any questionable input. The analysis by synthesis method thus provides an unrestricted way to judge what
a machine knows, i.e., its prior knowledge—in a way, this is similar to dreaming in humans. Dreaming, or
the imagination, is also unrestricted in the sense that these are perceptions, often of great visual detail, that
also receive no input visual stimuli. Interestingly, then, the analysis by synthesis method may be viewed as
a way to determine what a machine “imagines” or “dreams.” If one were to draw several random samples
meant to represent a dream from a completely untrained model that possesses no prior knowledge of the
world, the random samples would be akin to white noise. A well-informed model, however, would produce
a detailed, interesting dream.

The fact that vision relies so heavily on prior knowledge and the imagination signifies that it is highly
probabilistic. Accordingly, probability and Bayesian inference play large roles in vision research. The
probabilistic nature of vision is most obvious with problems exhibiting imperceptibility, in which human
vision jumps between image interpretations often entirely different. In the bikini versus martini example, a
well-known example demonstrating ambiguity in visual perception, human vision oscillates between inter-
pretations of a bikini bathing suit and a martini drinking glass, depending on how the visual system interprets
the image. Mathematically, the fact that perception may jump between interpretations in some structured
state space poses a significant challenge for the design of learning and inference algorithms. Ambiguities in
visual inference that occur with human vision are, in general, difficult to model. Imperceptibility in vision
is more formally introduced in Chapter 9, which discusses information scaling regimes.

Imperceptibility may be formally defined as the complexity of an image subtracted from the complexity
of the world. As a measure of complexity, it may be aptly modeled with entropy. Given a generative model
such that pg ∼ p(pg) and I = g(pg), in which pg is a semantic representation of the world and I is an image,
imperceptibilityH(p(pg|I)) = H(p(pg))−H(p(I)). Entropy measures complexity or uncertainty, e.g., the
image complexity H(p(I)) = E[− log p(I)] = −

∫
p(I) log p(I)dI . Hence, as world complexity increases

relative to image complexity, imperceptibility grows. When the posterior probability p(pg|I) exhibits high
imperceptibility, it means that certain variables in pg, the semantic representation of the world, cannot be
inferred as the uncertainty is too high; hence, they are imperceptible. In this case, the model’s representation
of the world would need to be reduced in complexity.

As the concept of imperceptibility explains ambiguities in inference, it has been utilized in analyses of
abstract art. Artists intentionally create imperceptible aspects of a piece of artwork to induce ambiguous
visual interpretations. Viewers may proceed down different perceptual paths to interpret the artwork in
various ways.

1.3 Knowledge Representation

To begin to understand the way knowledge may be represented in vision, first consider the space of all image
patches of natural scenes and of a fixed size, e.g., 10 × 10 pixels. These image patches reside in an image
space whose dimension is the total size of the image patches, in this case 10 × 10 = 100. Each image
patch can be treated as one point in the image space. Hence, the image patches together form a population

7

Figure 1.5: Consider the complex distribution of mass in the universe, e.g., at stars (high density, low volume
clusters) and over nebulas (low density, high volume regions). Left: the universe with galaxies, stars and
nebulas. Right: a zoomed-in view of a small part of the image.

of points in the image space. One may consider an analogy between this population and the 3D universe,
as illustrated by Fig. 1.5. The distribution of mass within the universe is highly uneven. There are high
densities of mass at stars, but there are low densities of mass across nebulas (clouds of dust and gas in outer
space), in which mass is spread out. The distribution of the population of natural image patches in the image
space is also highly uneven. To model this space, it becomes necessary to identify, map out, and catalog
high-density clusters such as stars, as well as low-density regions such as nebulas.

Figure 1.6: The hope is that Ωp, the learned estimate of Ωf , approximates as closely as possible Ωf . The bet-
ter the approximation, the more closely the learned concept p approximates, and thus accurately represents,
the real concept f .

Just as a representative in the United States Congress represents a subset of the population, mathemat-
ically, a concept represents a subset of image patches within the entire universe of image patches. All the
image patches in this subset are perceived as the same pattern and hence are described by the same symbol,
or “visual word.” The subset, or subpopulation, of image patches that correspond to a concept can be rep-
resented mathematically by a probability distribution or a statistical model. Hence, concepts can ultimately
be represented by statistical models, which is quite powerful.

Thus, there are two spaces: the image space of image patches (signals) and the model space of concepts
(symbols), depicted in Fig. 1.6. Each concept, which corresponds to a set of image patches in the image
space, is represented as just one point in the model space. For example, in Fig. 1.6 the set of image patches
Ωf in the image space correspond to one concept f , a point in the model space. All the image patches of a

8

concept, despite having diverse pixel intensities, correspond to the same concept because they are perceived
as the same pattern or object to the visual system.

Suppose a number of image patch examples are observed from the set of image patches Ωf , and the
goal is to learn a concept f in the model space based on these examples. In other words, the goal is to
recover the set Ωf to best learn the concept f . First and foremost, it is impossible to fully recover the set Ωf ,
since it is impossible to access all image patches in the universe that belong to Ωf . All the image patches
that correspond to the concept of sand, for example, are clearly not somewhere in a dataset. However, it is
still possible to come up with an approximated estimate of Ωf . Call it Ωp, which corresponds to a concept
p in the model space. The hope is that the set Ωp is close to the set Ωf in the image space, so that the
concept p will be as close as possible to the concept f in the model space. For example, one might hope p
is within a distance ε of f , measured by some predefined metric. In machine learning, identifying Ωf based
on examples from Ωf is referred to simply as learning, and these examples are training examples.

Figure 1.7: Observe a plot of eigenvalues, in decreasing order, both for concepts of low-dimension (blue
curve) and high-dimension (red curve).

Concepts can differ greatly in their complexities. Some concepts may appear to be very simple or
regular, such as a line segment, a triangle, or even a human face, while other concepts can appear quite
complex or random, such as stochastic textures like grasses or other foliage. Some concepts lie in between,
such as the face of a tiger. Ultimately, concepts may be defined as textures, textons, or some composition
of the two. Compositions of textures and textons are discussed in the second book in the series. Fig. 1.7
is a simple illustration of concepts with different complexities. For each concept, such as a texture or the
face of a tiger, a number of examples are collected, which may then be aligned in the case of, e.g., faces.
Principal component analysis is performed and the eigenvalues are plotted in descending order. For a simple
concept such as a face, the eigenvalues drop to 0 very quickly, indicating that the images lie in a very low-
dimensional space. For a complex concept such as a texture, the eigenvalues stay high for an extended range,
indicating that the images lie in a very high-dimensional space. For the face of a tiger, the eigenvalues lie in
between.

The complexity of a concept f in the model space can be measured by the log-volume of the correspond-
ing subset Ωf in the image space. This log-volume is called entropy in statistical physics and information
theory, and it is called intrinsic dimension in mathematics and coding theory. As one can see in Fig. 1.8,
entropy may be used as an axis on which to map concepts. Geometric patterns belong to the low-entropy
regime, while texture patterns belong to the high-entropy regime. Many object patterns lie in the mid-
entropy regime. Textons are low-entropy, textures are high-entropy, and many compositional structures in

9

Figure 1.8: More simple geometric patterns like edges and bars have low entropy, while stochastic textures
like fur and carpet have high entropy.

between are mid-entropy. Textures, textons, and compositions provide three ways to characterize a set in
the image space that represents a concept in the model space. While patterns in the low-entropy regime
tend to be simple and patterns in the high-entropy regime tend to be random, patterns in the mid-entropy
regime tend to be quite informative. The informativeness of a concept f can be measured by the number of
parameters needed to specify it in the model space. Central to the goal of this book is to establish a unified
mathematical framework and form of knowledge representation under which these entropy regimes may be
further studied and defined.

With the aim of unified knowledge representation, a natural question is how to relate different types
of knowledge. Vision models that lend knowledge representation can generally be categorized into three
paradigms: logic models, probabilistic models, and discriminative models, as shown in Fig. 1.9. In the
1960s and 1970s, knowledge was mostly represented by logic formulas, i.e., propositions and predicates,
called well-formed formulas. In this paradigm, a concept is represented by a set, which is in turn specified
by well-formed formulas. As such, a concept is ultimately equivalent to a set of states, from a joint state
space, that satisfies all the well-formed formulas. Propositional calculus, first-order predicate calculus,
situation calculus, and event calculus are all used to represent knowledge. In general, the logic paradigm
for knowledge representation is alive and well, and it is used today to solve many problems in vision. For
example, situation calculus is used for causal reasoning in robot planning. A clear advantage of logic for
knowledge representation is that it is rigorous and enables pure reasoning; however, a clear disadvantage is
that it is inherently fragile in that it is not grounded on observational data. Truths found by exercising logic
alone are called a priori truths; they are justified by reasoning that proceeds only from theoretical deduction,
completely independent of empirical data.

Beginning in the 1980s, based partly on a desire to ground knowledge representation on empirical data,
there was more research into probabilistic models, which provided imperfect knowledge representation and
the ability to make inferences from observed signals with some degree of uncertainty. Note that “imperfect”
knowledge representation does not imply that knowledge is infused by noise; it signifies that knowledge
can be represented in a non-absolute way, with some degree of uncertainty. The Bayesian Belief Network
described by Judea Pearl in 1984 is an example of such a probabilistic model. In probabilistic models,
concepts are no longer regarded as deterministic sets but rather probabilistic ensembles. Two concepts may,

10

Figure 1.9: At the highest level of vision and cognition, one can discriminate between three types of models:
Knowledge Representation (U) models, Causal (C) models, and Value and Utility (V) models. The last two
types are discussed in the third book in the series, along with many other more advanced artificial intelligence
concepts. Knowledge representation models aim to describe the world as intuitively and as accurately as
possible. Causal models represent cause and effect in the physical world. Value models compute how much
value is placed on certain objects or ideas; they involve morality. Causal (C) and Value (V) models together
guide the creation of the world. For example, chairs are created because they have a certain value (V) and
satisfy some causality (C) in physics, allowing an individual to rest when he or she sits down. Causal and
Value models, as they uncover knowledge, feed Knowledge Representation models. There are 3 paradigms
for knowledge representation: logic models, probabilistic models, and discriminative models. Probabilistic
models have low- (e.g., textons), mid-, and high-dimension (e.g., textures) regimes, each increasing in
entropy. At the top-right, one can see an 32x32 image space, i.e., 1024 dimensions, in which part of the
space is only 2D, while another part of the space is 990D. This conveys that dimensionality often varies
greatly in just one image, lending instances of each of the low-, mid-, and high-dimension regimes.

for example, overlap in the set of instances they define. There are two regimes of probabilistic graphical
models: flat and hierarchical. The flat regime includes descriptive or declarative models, such as constraint-
satisfaction models, Markov random fields, Gibbs models, and Julesz ensembles. The hierarchical regime
includes generative or compositional models, such as Markov trees, stochastic context-free grammars, and
sparse coding models. Integrating context into hierarchical models, there are models such as primal sketch,

11

And-Or graphs (spatial, temporal, causal, and attributed), and stochastic context-sensitive grammars. All of
these are reviewed in this book.

The last paradigm for knowledge representation in vision, to go along with logic and probabilistic mod-
eling, is discriminative modeling. Discriminative models include neural networks (e.g., convolutional neu-
ral networks, recurrent neural networks), boosting, logistic regression, and support vector machines. Dis-
criminative models often have different pipelines for each task in a problem, such as pipelines for object
classification, pose estimation, and attribute recognition. This actually leads to non-unified knowledge rep-
resentation, which is unhelpful for the aim of this book. So, although discriminative models can be used to
represent knowledge, they are often used in such a way that does not contribute to a unified representation.
Discriminative models also require a huge number of parameters (on the order of O(107)) and a very large
amount of data for supervised training (on the order of O(106)). Generally, amongst the three paradigms
of knowledge representation, discriminative models are very complex while logic is simple; probabilistic
models lie somewhere in between, simple enough to understand thoroughly and complex enough to capture
complex data distributions. A goal of this book is to integrate these three paradigms providing knowledge
representation: logic models, probabilistic models, and discriminative models.

1.4 Pursuit of Statistical Models

So, broadly speaking, why are statistical models useful in computer vision, and what is the origin of these
models? Some assume that statistical models and probability have a role in computer vision primarily due
to the noise and distortion present in natural images. This is truly a misunderstanding. With the abundance
of high-quality cameras that exist nowadays, there is rarely a considerable amount of noise or distortion
in images anymore. Rather, probability and statistical models actually help capture more detail in images,
as opposed to helping represent less detail, i.e., noise or distortion. Accordingly, statistical models, which
provide an intrinsic representation of visual knowledge, actually help capture image regularities.

As discussed previously, a population of natural image patches can be viewed as a cloud of points in
the image space. The distribution of the cloud of points can be described by a probability density function.
Image patches of a certain pattern, such as a face, form a subpopulation in this cloud of points. If one
randomly samples an image patch from this face subpopulation, then the density function one assigns to
the random image patch, naturally, should be the density function of the subpopulation from which it was
sampled. In this way, each pattern, or concept, corresponds to a probability distribution defining a subset of
the image space, and it can be defined by a probability density function or a statistical model.

In the literature, Grenander (1970) [86] and Fu (1973) [74] pioneered using statistical models for various
visual patterns. In the late 1980s and early 1990s, statistical models become popular and then indispensable
when the computer vision community recognized that problems, typically shape-from-X problems, are in-
trinsically ill-posed. If interested, the reader is invited to explore the historical context more. Nowadays,
it is known that extra information is needed to account for the regularities in natural images, and statistical
models can help to encode or represent these regularities. Crucially, statistical models also assist in learning
and recognizing patterns or objects in the first place.

Fig. 1.10 illustrates two methods of pursuing a statistical model of a concept, i.e., of learning a concept
f by approaching Ωf with a sequence of models. In the first method, starting from the entire image space,
at each step a new constraint is added to shrink the image space. With more constraints continually added,
Ωf is captured from the outside. This method of pursuing a statistical model characterizes descriptive
or declarative models, which are flat. Descriptive models represent one regime of probabilistic graphical
models and include constraint-satisfaction models, Markov random fields, Gibbs models, Julesz ensembles,
and other contextual models. In the second method, starting from a single point or small ball inside Ωf , at

12

Figure 1.10: This illustrates two strategies of pursuing a statistical model for a concept. First, in descrip-
tive or declarative models, a set Ωf can be pursued through a sequence of models that continually reduce
the entire image space to capture Ωf from the outside. The image space is gradually reduced by adding
constraints. Second, in generative or compositional models, a set Ωf can be pursued through a sequence of
models that continually expand from a single point or small ball to gradually fill in Ωf from the inside. In
this case, the image space is gradually expanded by adding dimensions.

each step some dimensions are expanded to gradually fill in Ωf from the inside. This method of pursuing
a statistical model characterizes generative or compositional models, which are hierarchical. Generative
or compositional models represent another regime of probabilistic graphical models and include Markov
trees, stochastic context-free grammars, and sparse coding models. Integrating contextual and hierarchical
information are, e.g., primal sketch models, And-Or graphs, and stochastic context-sensitive grammars.

The reason for choosing one of the two model pursuit strategies, descriptive or generative, for a given
problem is intuitive. Some sets Ω may be of very high dimensionality, and hence it is more efficient to
capture them with a descriptive model using constraints, gradually reducing the volume of the search space.
These sets Ω are modeled through description, hence the name “descriptive” models. Other sets Ω may
be of much lower dimensionality, and hence it will be more efficient to capture them with a generative
model using expansion, gradually increasing the volume of the search space by adding dimensions. These
sets Ω are modeled by pursuing latent variables, which are meant to encode and explain training examples
and may be used to generate new examples, hence the name “generative” models. Some sets Ω may be of
more middle dimensionality and hence require a more complex combination of a generative and descriptive
model.

By analogy, if a teacher is grading a final exam which has a full score of 100, for a very strong student
the teacher may start from 100 points and subtract points occasionally for incorrect answers. For a very
weak student, the teacher may start from 0 and add points occasionally for correct answers. Accordingly,
students at both ends of the spectrum are easy to grade, but students near the exam average require more
work. Images for most vision problems are near the middle of an analogous spectrum, making it necessary
to capture challenging sets Ω that form complex, multimodal distributions of varying dimensionality.

Fig. 1.11 illustrates use cases for the different regimes of models, using only two images, one of red
maple leaves and the other of green leaves. Both images are simply shown at five varying levels of magnifi-
cation. On the very left of the figure, the low-dimension regime may be observed. As the images are of low

13

Figure 1.11: Scanning from left to right, low-dimension, mid-dimension, and high-dimension regimes may
be observed for two images. There is a gradual transition from images that should be fully modeled by a
generative model, on the very left, to images that should be fully modeled by a descriptive model, on the
very right.

dimension, it is easiest to generate or compose them through expansion with a descriptive model, increasing
the volume of the search space by adding dimensions. On the very right of the figure, the high-dimension
regime may be observed. As the images are of high dimension, it is easiest to describe them with a genera-
tive model, reducing the volume of the search space by introducing constraints. From the left to the right of
the figure, there is a gradual transition from images that should be fully modeled by a generative model to
images that should be fully modeled by a descriptive model. In between, a combination of the two should
be used to optimally model the leaves. This is a powerful example because it shows that, even for the same
picture but at varying levels of magnification, there is a need for descriptive and generative models and their
combination.

Thus far, relatively small image patches have been discussed, e.g., 10 x 10 pixels. The concepts that arise
from small image patches may be considered “atomic concepts,” i.e., the simplest symbols, or descriptors,
at the lowest layer of perception. Atomic concepts can be further composed into larger patterns and more
abstract concepts. This leads to a hierarchy of concepts at multiple layers, as illustrated by Fig. 1.12.

At the bottom layer, there are concepts for image patches. High-entropy concepts can be described by,
e.g., Markov random fields, and low-entropy concepts can be described by, e.g., sparse coding models. At
the top layer, there is reasoning based on logic and event calculus. In the middle layers, there are recognition
and cognition, which can be described by stochastic grammars allowing for recursive compositions. As will
be discussed, stochastic grammars in the form of Spatial-Temporal-Causal And-Or graphs are actually well-
suited to learn and describe concepts at all layers.

14

Figure 1.12: Concepts become increasingly abstract, moving up through the hierarchy from coding to recog-
nition to cognition to reasoning. However, concepts at all levels can be learned and described by Spatial-
Temporal-Causal And-Or graphs.

15

2

Statistics of Natural Images

The set of natural images may be defined as the images of the natural world that have been observed by hu-
mans. Images and video actually captured by humans in modern civilization represent only a low-resolution,
very small subset of this set. Accordingly, the volume of the natural image space far exceeds the volume
of the space of images captured by humans, although it is much smaller in comparison to the volume of
the entire, unconstrained image space. Natural images contain an overwhelming variety of structures and
patterns resulting from a myriad of physical processes. They exhibit hierarchical compositions of objects
at a broad continuum of scales. In regard to a captured image, the optical axis is usually, but not always,
horizontal.

It may be surprising to note that natural images, with their diverse array of patterns and orientations, con-
sistently share any statistical features. Indeed, they do and so much so that they can be easily distinguished
from non-natural images based solely on these features. For example, most natural images contain simple
subcomponents such as flat surfaces, well-defined edges, and regular textures. The common appearance of
these structures suggests that concise but flexible models can efficiently describe natural images at the most
basic level by repeated instances of similar patterns.

Barlow in 1961 [9] and Gibson in 1966 [81] were among the earliest researchers to emphasize the role
of ecology in visual perception, i.e., that visual concepts are learned and mentally categorized based on
examples in the environment. Computer vision, like human vision, consists of an agent that learns abstract
representations from many observed examples. In a computer vision problem, the training data is considered
to be and as testing data what would be future observed images by a human. The learned representations
of vision models, similar to concepts for humans, should be sufficiently generalizable so that the model can
adapt to new, unseen examples just as a human can.

Throughout Part 1 of this book, statistical phenomena associated with natural images are discussed.
This begins the process of establishing a common vocabulary and grammar for vision supported by a uni-
fied mathematical foundation. In this particular chapter, some initial statistical properties discovered for
natural images are examined, such as the 1/f -power law, high kurtosis, and scale invariance. Manifolds
in the image universe, image scaling in the image space, and imperceptibility are discussed. There are
many motivations for understanding natural image statistics, but a few include potential optimizations in
image/video compression due to redundancy reduction and improved image/video coding, an understand-
ing of ecologic influences on neural receptive fields (e.g., how neurons in visual cortical areas adapted to
visual environments over time), and the knowledge to exploit image regularities and prior models to solve
ill-posed problems, such as image restoration (e.g., denoising, inpainting), estimating surface from stereo,
motion, texture, etc., and the development of concepts and generative models (as prior knowledge) for
scenes, objects, actions, events, and causality from images and video.

17

2.1 Image Space and Distribution

Figure 2.1: The natural image space is a subset of the entire image space, i.e., Ωnat ⊂ ΩI. Lines are drawn
from the four natural images below to their positions in Ωnat, a high-dimensional space. Similar images lie
on local manifolds of Ωnat, separated by relatively small geodesic distances. The image of noise does not
belong to the natural image space, Ωnat.

Beginning with a concrete description of an image space, consider the population of all grayscale image
patches of size 10 × 10 pixels with each pixel intensity in the range [0, 1]. Each possible image patch is a
point in a high-dimensional space [0, 1]100. This means that an image can be represented by a single vector
with 100 elements for the 100 pixel intensities. If the images are color instead of grayscale, each of the
three color channels (red, green, blue) has its own 10 × 10 image patch and, accordingly, the image space
is [0, 1]300. The population of natural image patches forms a cloud of points, which is only a subset of the
entire image space. The distribution of this cloud of points exhibits a high-dimensional geometry reflecting
the various structures in natural images.

The distribution of natural images, i.e., the cloud of points, can be described by a probability density
function, indicating the density of points at each position in the image space. The density at a position in
the image space indicates how likely it is an image from that position would be chosen, if it were sampled
from the distribution of natural images. The density of the distribution is very uneven. In some positions
of the image space, e.g., positions with image patches of forest scenes, the density is high, while in other
positions, e.g., one with a random sample from a high-dimensional uniform distribution, the density is virtu-
ally zero. Simply put, this is because amongst natural images, image patches of a forest scene are relatively
common, whereas an image patch from a high-dimensional, and hence inevitably unique, distribution are
less common. The concentration of the density function around certain geometric regions is analogous to
the distribution of mass in the universe. The density of mass is high at a star and low across nebulas, clouds
of gas and dust in space. And the density is practically zero over large spans of space.

18

Now some notation should be introduced. Let I(x) be an image patch defined on a square or rectangular
domain D, where x ∈ D indexes the location within the image. The domain, or coordinate space, D for
location x can be continuous or discrete. An example of a continuous domain is D = [0, 1] × [0, 2], which
denotes a rectangular 1 × 2 grayscale image with continuous axes. The coordinates for location x are
continuous, i.e., x = ([0, 1], [0, 2]). An example of a discrete domain is D = {1, . . . , 10} × {1, . . . , 10},
which denotes a 10 × 10 pixel grayscale image with discrete axes. In this case, the image is composed
of pixels. The coordinates for location x are discrete, i.e., x = ({1, . . . , 10}, {1, . . . , 10}). The coordinate
spaceDcolor of a three-channel color image is simply the Cartesian product of the grayscale coordinate space
Dgray and the set {1, 2, 3} that indexes the color channel, i.e.,Dcolor = Dgray×{1, 2, 3}. I(x) may be treated
as a function I : D → V , which gives the intensity values of each pixel in I. For continuous pixel intensities
between 0 and 1, pixel values V = [0, 1], and for discrete integer-valued pixel intensities between 0 and 255,
pixel values V = {0, . . . , 255}.

When the coordinate space D is discrete and a finite set, i.e., for pixel images with a finite number of
pixels, I may be treated as a vector if an ordering for the pixels is fixed. As such, each I becomes a point
in the image space ΩI = V |D|, in which |D| is the total number of pixels in the image. (For color images,
each channel has its own separate pixels.) For example, every 10 × 10 pixel grayscale image patch I, with
pixel intensities between 0 and 1, is a point I ∈ ΩI = [0, 1]100. (The notation ΩI = [0, 1]100 indicates that
the sample space ΩI is made up of samples with 100 pixels that take a continuous value between 0 and 1.)
Similarly, every 10×10 pixel color image, with pixel intensities for each channel between 0 and 1, is a point
I ∈ ΩI = [0, 1]100×3 = [0, 1]300. A more technical definition of ΩI is needed for the cases in which D is an
infinite set, but for the majority of topics covered in this book, this discrete, finite, pixel-based description is
sufficient.

Now consider the cloud of points Ωnat ⊂ ΩI made up of natural image patches. The distribution of Ωnat
can be described by a density function f : ΩI → R, such that f ≥ 0 and

∫
ΩI
f(I)dI = 1. Intuitively, for

each point I ∈ ΩI , let N (I) be a small neighborhood around I. Then f(I) is the limit of the proportion of
points in the population that belong to N (I) divided by the volume of N (I), as the volume of N (I) → 0.
This is simply the asymptotic extension of the common notion of population density. For instance, the
population density of Los Angeles is the number of people in Los Angeles divided by the area of Los
Angeles.

In the explanation above, there is nothing probabilistic. The density function f is simply a deterministic
description of a cloud of points in a high-dimensional space. Now, however, probability is introduced. If
an image patch I is randomly sampled from the population of natural image patches, i.e., a point from the
cloud of points described by density function f(I) is randomly sampled, then image patch I is said to be
a random sample, or example, from f(I). Accordingly, f(I) becomes the density function for the random
image patch I, and I ∼ f(I) is written. The goal of learning, then, is to gain some knowledge about the
density function f(I) based on a set of examples {I1, ..., IM} that are sampled from f(I) independently.

2.2 Information and Encoding

Recall that concepts (in the model space) are represented by, or correspond to, sets (in the image space).
They can be defined by a distribution or density function f focused on their corresponding set. A concept
can be general, such as the concept of natural images, a certain texture, or white noise, or it can be more
specific, such as the concept of the face of a tiger. In any case, a concept is represented by a set Ωf in the
image space ΩI . Images from the density function, i.e., I ∼ f(I), are focused on the subspace Ωf ⊆ ΩI .

In high-dimensional image spaces, common to vision problems, a notable phenomenon occurs. The
density function f(I) is close to zero outside of Ωf . It is nearly uniform inside of Ωf , but in the rest of the

19

image space ΩI , it is close to zero. So it can be roughly stated that f(I) = 1
|Ωf | for I ∈ Ωf and f(I) = 0

for I /∈ Ωf . The high-dimensional nature of the data in many vision problems makes it such that the image
space ΩI is largely dominated by white noise. As a result, a nearly uniform density exists over ΩI , as
roughly 99.9% of it is simply white noise. The goal of learning a concept, then, is to identify which set Ωf

in the largely meaningless, noise-dominated set ΩI corresponds to the given concept, i.e., find a probability
density function f defining it.

Now consider two models, an "unfocused" model g(I) that has uniform density within ΩI and a "fo-
cused" model f(I) that has uniform density within the subset of natural images Ωnat and is approximately
zero outside this set. The volume of the subset Ωnat can be described using entropy, which is the average rate
information is produced by a stochastic form of data. Entropy can be intuitively understood as a measure of
disorder. Deterministic variables (with perfect order) possess zero entropy, while uniform random variables
(with perfect disorder) possess the maximum entropy of all possible distributions over the support of the
uniform variable.

The fact that the volume of the subset Ωnat can be described using entropy is an important point. It means
the complexity of a concept f in the model space can ultimately be expressed by the entropy, i.e., the log
volume, of its corresponding set Ωf in the image space. The entropy of an image set, by giving the disorder
of pixel information of that set, encodes the complexity of the corresponding concept. In vision, entropy
and entropy rate are both measured in pixels.

The entropy H of a distribution p(I) over a finite image space ΩI is

H(p) := −
∑
I∈ΩI

p(I) log2 p(I).

The use of log2 gives a measurement of entropy in terms of bits but, in general, any base can be used for the
logarithm, as different bases only scaleH differently. For a distribution q that is uniform over a set Ωq ⊆ ΩI

and zero elsewhere, the entropy is

H(q) = −
∑
I∈Ωq

1

|Ωq|
log2

1

|Ωq|
= log2 |Ωq|,

in which the sum over ΩI reduces to a sum over Ωq, as density is zero outside of Ωq. Therefore, the entropy
of a uniform distribution q is a measure of the log volume of the space Ωq. (Note that this is why the general
formulation of entropy has a negative sign, i.e., so the resulting entropy in operations like the one above is
positive and not negative.) In particular, for the "unfocused" model that is uniform over the entire image
space ΩI , H(f) = log2 |ΩI |, and for the "focused" model that is uniform over only the natural image space
Ωnat and zero elsewhere, H(g) = log2 |Ωnat|. Later chapters describe a more detailed relationship between
entropy and learning using information theory. For now, it is only important to note the connection between
entropy and the volume of an image space.

The entropy of a subset of the image space encodes the amount of information needed to represent
members of the subset. Consider the space Ωh of grayscale images that have the same fixed-width horizontal
black bar against a white background. Each image can be described by a single number that represents the
vertical position of the bar. Suppose that there are |Ωh| = nh possible positions for the horizontal bar. Now
consider the space Ωhv of grayscale images that have the same fixed-width horizontal black bar and the
same fixed-width vertical black bar against a white background. All images from this set can be described
by exactly two numbers representing the locations of the two bars. Suppose that there are nh positions for
the horizontal bar and nv positions for the vertical bar, such that |Ωhv| = nhnv. The amount of encoding
information needed in the space of vertical and horizontal bars is higher than that of horizontal bars alone,
and this is reflected in the difference log2 |Ωh| − log2 |Ωhv| = − log2 nv < 0.

20

In the case of images with |D| pixels, e.g., |D| = n2 for a grayscale image with n pixels for both its
height and width, the entropy rate H̄ scales entropy relative to the image size, lending a per-pixel entropy.
For a density q uniformly distributed over Ωq, the entropy is

H̄(q) =
H(q)

|D| =
1

|D| log2 |Ωq|.

For example, consider the space of n× n grayscale images where V = {0, . . . , 255}, indicating each pixel
value is an integer from 0 to 255. In this case, there is the image space ΩI = {0, . . . , 255}n2

and the log
volume of the image space |ΩI | = 256n

2
. Therefore, the unfocused model g(I) with uniform density in ΩI

has entropy rate

H̄(g) =
1

n2
log2 |ΩI | =

n2 log2 256

n2
= 8 bits/pixel.

This means that an image randomly sampled from ΩI can be encoded using an average of 8 bits per pixel.
Now, considering a natural image I ∈ Ωnat sampled from f , the many regularities found in natural

images allow for a drastic reduction in the amount of bits needed for encoding the image. The empirical
upper bound for the average bits per pixel, i.e., the entropy rate, needed to encode natural images is 0.3:

H̄(f) =
1

|D| log2 |Ωnat| ≤ 0.3 bits/pixel.

For the unfocused model g(I) with uniform density in ΩI , 8 bits per pixel are needed to encode any potential
image that could be drawn from ΩI ; it is not possible to compress uniform random samples drawn from the
entire image space ΩI . However, for the unfocused model f(I) with uniform density within Ωnat and zero
density elsewhere, the reduction in entropy rate from 8 bits/pixel to 0.3 bits/pixel allows for compression.
This decreased entropy rate of 0.3 bits/pixel gives an intuitive measure for the amount of compression
possible when the regular features found across previously observed natural images are used to encode new
images.

Here the first statistical observation for natural images may be noted: redundancy. The redundancy in
real world images allows for continual improvements to image/video compression. Instead of needing 8 bits
to encode a pixel, only an upper bound of 0.3 bits is needed. Using any more bits than this to encode a pixel
would not take advantage of all the redundancies in natural images. Note that compression methods work
well on natural images but poorly, for example, on a noisy image such as a QR code (a matrix barcode).

Now a rough estimate of the size of the observed natural image space Ωnat may be given. Assume there
are 10 billion people who have lived on Earth, and each person lived or will live to be 100 years old, and
each person observed 20 images per second. The volume of the natural image space, |Ωnat|, as seen by
humans, may be estimated as

|Ωnat| ≈ 107 humans × 100 years × 365 days × 24 hours × 3600 sec × 20 fps ≈ 6.3 ∗ 1022 images.

The size of the total image universe |ΩI | = 256n
2

discussed previously is much larger than |Ωnat|, even for
very small image spaces, e.g., image patches with n = 10 pixels for both height and width. Keep in mind
that the models in this book are meant to represent samples from the natural image space Ωnat and reflect
the regularities observed therein.

2.3 Image Statistics and Power Law

The universe is composed of an ensemble of structures at many different scales. Using a coarse scale, a
structure may be perceived as an atomic entity, while using a finer scale, the same structure may be perceived

21

as a compound entity with many different parts. Structured ensembles that can be viewed as a singular entity
are commonly referred to as objects. In natural images, objects can be identified by regularities (such as
consistent color or texture or connected surfaces) that enable perception of them as distinct concepts. The
regularities observed in natural images reflect the hierarchically structured order of the universe. Noise
images, on the other hand, do not obey such laws. As a result, natural images and noise can be distinguished
based on numerical summaries of structural regularities. These statistical properties form the foundation for
a more detailed understanding of images pursued in later chapters.

In natural images, nearby pixel intensities are typically similar in value, but occasional jumps or dis-
continuities can be observed as well. As two neighboring cities are not usually expected to have a large
difference in elevation, two neighboring pixels are not usually expected to have a large difference in inten-
sity, i.e., pixel values, or two neighboring patches to have a large difference in smoothness. This describes
regions of low power and high abundance in the landscape, as they are common but low energy relative to
other regions. However, if a city is built near a mountain range such as the great city of Kathmandu, a large
increase in elevation between Kathmandu and the nearby Mt. Everest base camp is indeed observed, which
is analogous to neighboring pixels having a large difference in intensity, indicating the potential presence of
an edge or some strong feature. This describes regions of high power and low abundance in the landscape,
as they are not as common but exhibit high energy relatively. Considering the entire world as a landscape,
regions encompassing cities such as Kathmandu have high power but are not very abundant. Most regions
in the world have relatively consistent elevation, i.e., low power, and natural image landscapes follow the
same trend. Lastly, the elevation of two distant cities, e.g., Kathmandu and Los Angeles, is likely to be very
different, just as the intensity of two distant pixels.

A simple measure of similarity between the intensities of two pixels is covariance or correlation. For
an image I ∈ V |D| ⊂ R|D| with |D| pixels, assume that the marginal mean is normalized to be 0 and the
marginal variance to be 1, i.e., 1

|D|
∑

x I(x) = 0 and 1
|D|
∑

x I(x)2 = 1. Then the covariance between pixel
x = (x1, x2) and x + d = (x1 + d1, x2 + d2) can be calculated as C(d) = 1

|D|
∑

x I(x)I(x + d). The

covariance C(d) is a function of the distance between pixels, d, and can be large when |d| =
√
d2

1 + d2
2 is

small and decays to 0 as |d| becomes large. An equivalent measure of the similarity between the intensities
of two pixels is the power spectrum, or power spectral density, of the image in the Fourier domain. The
power spectrum of the image, A2(f), is simply the Fourier transform of the covariance function C(d), so
the covariance and the power spectrum are simply two ways of capturing the same statistical property: the
second-order moment of the image distribution.

The power spectrum A2(f) is the square of the amplitude spectrum A(f). Recall that neighboring
pixels exhibit relatively high power, and hence high amplitude, for large differences in pixel intensities and
vice-versa. The power spectrum provides a way to capture and represent these differences. It describes
how relations between image pixels are distributed for different frequencies, i.e., how the image content
fluctuates at different frequencies, or scales. In general, the power spectrum describes the distribution of
power into frequency components composing a given signal. As the relevant application is vision, the signal
is an image and the frequency is spatial, not temporal. Spatial frequency is periodic across positions in
space and a measure of how often sinusoidal components (as determined by the Fourier transform) of the
structure repeat per unit of distance, in this case pixels. According to Fourier analysis, any physical signal
can be composed into a number of discrete frequencies, or a spectrum of frequencies over a continuous
range. Accordingly, images may be composed as a number of discrete spatial frequencies. The statistical
average of a signal as analyzed in terms of its frequency content is called its spectrum, and summation
or integration of the spectral components yields the total power (for a physical process) or variance (for a
statistical process). The term from physics will be used: power.

As mentioned previously, it may be surprising to note that natural images, with their diverse patterns and

22

orientations, share any consistent statistical features at all, but indeed they do. Natural images can easily be
distinguished from non-natural images, such as images of random patterns for example, by their amplitude
spectra or power spectra. In images of random patterns, such as white noise, the amplitude spectra is, by
definition, flat. Natural images, however, display the greatest amplitude at low frequencies (at the center of
the plot in Fig. 2.2) and decreasing amplitude as the frequency increases, regardless of the orientation of the
image, as depicted in Fig. 2.2.

Figure 2.2: From Field (1987) [62], two natural images display similar amplitude spectra. The center of
the plots represents 0 spatial frequency, and frequency increases as a function of distance from the center.
Orientation is represented by the angle from the horizontal. Note how amplitude decreases sharply with
increasing frequency at all orientations. To be precise, amplitude decreases by a factor of 1/f , and power
decreases by a factor of 1/f2, in which f is frequency [62].

The Fourier transform often decomposes a function of time, i.e., a signal, in the time domain into its
constituent temporal frequencies in the frequency domain. In this case, it decomposes a function of space,
i.e., an image, in the spatial domain into its constituent spatial frequencies in the frequency domain. It is a
linear transform that projects an image, in the form of a vector, onto an eigenvector space, transforming the
image from a Euclidean basis to a Fourier basis. In many cases with discrete signals, the Fourier transform
is invertible, and no data is lost if the inverse Fourier Transform is used to recover the original signal. Even
when the original signal is real-valued, frequency signals contain both real and imaginary components, so
absolute value is used to represent the total power or energy of a signal. A Fast Fourier Transform (FFT)
may be performed on an image I ∈ R|D1|×|D2| using

Î(ξ, η) =
∑

(x,y)∈D1×D2

I(x, y)e−i2π(xξ
H

+ yη
W

) (2.1)

in which |D1| = H is the number of pixel rows, |D2| = W is the number of pixel columns, and (ξ, η)
represents the horizontal and vertical frequencies. The absolute value of the resulting complex number

A(ξ, η) = |Î(ξ, η)|

is the Fourier amplitude, which gives the magnitude of the frequency (ξ, η) within the image signal I. The
Fourier power A2(ξ, η) is the square of the Fourier amplitude A(ξ, η). Intuitively, the Fourier power, for

23

given horizontal and vertical frequencies (ξ, η), encodes how many components of the image vector are
projected onto these frequencies at a given orientation.

An interesting empirical observation for natural images is that, for all frequency f =
√
ξ2 + η2:

A(f) ∝ 1/f (2.2)

logA(f) = constant− log f (2.3)

Thus, the amplitude A of a Fourier coefficient is inversely related to the frequency f . The inverse relation-
ship between amplitude and frequency is referred to as the inverse power law for natural images. This is the
second statistical observation for natural images. Fig. 2.3 plots the logA(f) over log f for the four natural
images from Fig. 2.1, and the curves can be fitted by straight lines with a slope close to −1, showing the
inverse relationship. Not all natural images exhibit the inverse power law, e.g., natural images of fields of
grass or the night sky, but this can be expected for most natural images [62].

Figure 2.3: Note the log of the amplitude, logA(f), for a given log of the frequency, log f , for the four
natural images from Fig. 2.1. In natural images, it is observed that the amplitude A(f) is inversely related
to the frequency f , i.e., A(f) = 1/f . Accordingly, the power A2(f) = 1/f2. This property for natural
images is referred to as the inverse power law.

The inverse relationship between amplitude and frequency may be used to calculate the total Fourier
power A2(f) in the frequency band, or octave, [f, 2f]:∫ ∫

f2≤ξ2+η2≤(2f)2

|Î(ξ, η)|2dξdη = 2π

∫ 4f2

f2

1

f2
df2 = constant, ∀f. (2.4)

As depicted in Fig. 2.4, as frequency increases, and hence the total area within each frequency band in-
creases, amplitude decreases. As a result, the power remains constant overall, i.e., the power for a given
frequency band [f, 2f] is equal to the power for frequency bands [2f, 4f], [4f, 8f], and so forth. This is
what is communicated by Equation 2.4. This observation that natural images contain equal power across
frequency bands reveals that they are scale-invariant, lending the same power independent of frequency f ,
or scale, i.e., the viewing distance.

24

Figure 2.4: Because amplitude decreases as the frequency (and hence the total area within each frequency
band) increases, natural images effectively exhibit constant power within each band such as ω2. η and ξ
represent the vertical and horizontal frequencies, respectively. 2Po indicates a doubling of the frequency of
the original image or image distribution, Po.

The second-order properties of the image distribution, captured by the covariance C(d) and the power
spectrum A2(f), can be fully reproduced by a multivariate Gaussian distribution with a variance-covariance
matrix that agrees with C(d) or A2(f). For instance, a Gaussian model that accounts for the inverse power
law is surprisingly simple. It was shown by Mumford (1995) [176] that a Gaussian Markov Random Field
(GMRF) model, as in Equation 2.5, has exactly 1/f -Fourier amplitude:

p1/f(I;β) =
1

Z
exp

{
−
∑
x

β|∇I(x)|2
}
, (2.5)

in which |∇I(x)|2 = (∇xI(x))2 + (∇yI(x))2, and

∇x = I(x1 + 1, x2)− I(x1, x2) and ∇y = I(x1, x2 + 1)− I(x1, x2)

are discrete approximations of the gradients.
Since p1/f (I;β) is a Gaussian model, one can easily draw a random sample I ∼ p1/f(I;β). Fig. 2.5

shows a typical sample image by Mumford (1995). This model matches the local regularity of natural image
statistics and nothing else. It can be considered a natural image model with one constraint, making it only
slightly better than a random noise model. Large values of the parameter β lead to samples with large
regions of similar intensity, and small values of β lead to samples with more variation in nearby pixels. The
limiting case β → ∞ concentrates all mass on the zero image I = 0. From this, it can be concluded that
although certain statistics like the covariance and power spectrum found in natural images are also captured
by this model, these statistics clearly do not contain sufficient complexity to capture all key features needed
for natural image modeling and inference.

The power spectrum can also be pooled by Gabor filters centered at different frequencies. Gabor filters
are sine and cosine waves multiplied by elongate Gaussian functions, and the filter response is a localized
Fourier transform. Let F be a Gabor filter whose sine and cosine waves have frequency ω. Let [F ∗ I](x)

25

Figure 2.5: Observe a random sample from the Gaussian Markov Random Field model. Note that it has very
little structure, a large number of edges, and minimal flatness in its energy landscape. Clearly, second-order
properties such as covariance and spectrum do not sufficiently capture key features of natural images.

be the Gabor filter response at location x. Then, [F ∗ I](x) measures the frequency content of I around
frequency ω at location x. Due to the spatial localization of filter F , F also responds to sine and cosine
waves whose frequencies are close to frequency ω. Thus, if

∑
x |F ∗ I|2/|D| is pooled, it will be the average

of the power spectrum within the band of frequencies to which filter F responds. By the inverse power law,∑
x |F ∗ I|2/|D| remains scale-invariant, i.e., it is constant for different frequencies ω.

2.4 Kurtosis and Sparsity

Figure 2.6: The distribution of natural images has many low-dimensional spikes.

As mentioned above, second-order properties such as the covariance, power spectrum, or average of the
squared filter responses can be fully reproduced by a multivariate Gaussian distribution with a matching
variance-covariance matrix. The Gaussian distribution can be thought of as a cloud of points, which for a
Gaussian forms an ellipsoid shape. The ellipsoid-shaped Gaussian distribution is rather dull. It cannot be

26

expected to capture the presumably highly complex shape of the natural image distribution. For example,
the distribution of natural images has many low-dimensional spikes, as illustrated by Fig. 2.6. As a re-
sult, researchers have put immense effort into finding patterns of deviation from the Gaussian distribution,
attempting to pinpoint non-Gaussian features. The study of natural image statistics has leveraged many
properties, from covariances to histograms of filter responses, e.g., Gabor filters. While covariances only
measure second-order moments, histograms of filter responses include higher-order information such as
skewness and kurtosis.

To define skewness and kurtosis, let X denote a random variable with mean µ and variance σ2, such
that X can be normalized by the transform (X − µ)/σ. Skewness is the third-order statistical moment
E[((X − µ)/σ)3], and it measures the asymmetry of the distribution. Kurtosis is the fourth-order statistical
moment E[((X − µ)/σ)4], and a histogram with heavy tails demonstrates high kurtosis. In measuring
skewness and kurtosis of a random variable, the first-order moment µ and second-order moment σ2 only
serve to normalize the random variable, making its mean equal to zero and variance equal to one.

With histograms, the idea of a 1D marginal projection is utilized in order to gain an understanding of
a high-dimensional space such as Ωnat. A histogram can be regarded as a 1D marginal projection because
it contains statistics in one dimension, i.e., a line. Histograms allow peaking into a high-dimensional space
Ωf and learning about it by learning many 1D marginal densities of f(I). By learning these densities, the
idea is that a probability density could be constructed to represent Ωf in terms of all of these learned 1D
marginal densities of f(I).

The use of histograms leads to the third statistical observation about natural images: they exhibit high
kurtosis. The histograms of Gabor filter responses to natural images, found by Equation 2.6, are highly
kurtotic, i.e., heavy-tailed (Field, 1994). Here, F is a Gabor filter and fn(I) is a "focused" model, which
recall has zero density outside of the space of natural images Ωnat. The fact that the histograms have tails
heavier than a Gaussian distribution reveals that natural images have high-order, non-Gaussian structures.
Gabor filters are primarily used to detect orientation, but other filters are also used such as gradient filters,
Haar filters, and so forth.

The histogram of the filter response is calculated by the following equation:

h(a) =

∫
ΩI

f(I)δ(〈F, I〉 − a)dI (2.6)

The histograms defined by Equation 2.6 can also be visualized, as shown in Fig. 2.7. These histograms
represent 1D statistical properties for an image I, located in Ωnat ⊂ ΩI , a high-dimensional space. F is a
local filter, one that has different responses to different regions of image I that is represented by the points;
in linear algebra, the term “base” is often used instead of filter. The inner product 〈F, I〉 is zero when
F ⊥ I. The two filter responses illustrate the binning operation performed in Equation 2.6. High kurtosis
is observed due to the vast amount of orthogonality between filter F and image I. Remember that kurtosis
is associated with the tails of a distribution and not its peak. Accordingly, it is the greater extremity of
deviations, or outliers, displayed in the histograms in Fig. 2.7, not the high peaks of these histograms, that
portray the high kurtosis of the natural image. Any filter F response would show the same highly kurtotic
structure.

The high kurtosis in natural images is only marginal evidence for hidden structures in natural scenes. A
direct way to discover structures and reduce image redundancy is to transform an image into a superposition
of image components. This can be done, for example, with Fourier transforms, wavelet transforms [163],
various image pyramids [221] for generic images, and principal component analysis (PCA) for particular
ensembles of images, such as face images. The transformation from image pixels to a linear basis, such as
a Fourier basis, wavelets basis, or PCA basis, achieves two desirable properties. First, the transformation

27

Figure 2.7: Note how the histograms, or 1D marginal projections, which capture the filter responses of a
filter F to a natural image, display high kurtosis. That is, they have a heavy-tailed structure, exhibiting great
extremities of deviations, or outliers. An important statistical observation of natural images is that they have
a highly kurtotic structure.

induces variable decoupling; coefficients of these bases are less correlated or become independent in an
ideal case. Second, the transformation induces dimension reduction; the number of basis vectors needed to
approximately reconstruct an image is often ultimately much smaller than the number of pixels.

If one treats an image I(x) as a function defined on the domain D, then one may also use harmonic
analysis to perform image dimension reduction. Harmonic analysis decomposes various classes of functions
(i.e., mathematical spaces) or signals into a superposition of basic waves or basis systems. But the population
of natural images cannot be fully captured by such functional classes, and so a better solution is needed for
image decomposition. From this, an inspiring idea came about: sparse coding with an overcomplete basis, or
dictionary, introduced by Olshausen and Field in 1996 [188]. Sparse coding algorithms learn useful sparse
representations of data. Given a certain number of dimensions, they learn an overcomplete basis to represent
the data. An overcomplete basis signifies that there is redundancy in the basis, as vectors “compete” to
represent data more efficiently. This means not all dimensions are needed to represent a data point; some
may be set to 0. With an overcomplete basis, an image may be reconstructed by a small, i.e., sparse, number
of basis vectors in the dictionary. Olshausen and Field then learned an overcomplete dictionary from many
natural images. This often leads to 10 to 100 folds of potential dimension reduction. For example, an image
of 200× 200 pixels can be approximately reconstructed by roughly 100 to 500 base images.

The idea that natural images may be represented with sparse coding reflects the nature of the point cloud
formed by the population of natural images, which has many low-dimensional spikes, as illustrated by Fig.
2.6.

2.4.1 High Kurtosis Motivates Sparse Representation

The phenomenon described that involved 1D marginal histogram spikes occurring in the 3D space of the
data distribution motivates the idea of sparse coding. Consider each low-dimensional spike to be a street

28

and each location on that spike to be an address. With a street name and address, one can use the low-
dimensional spikes to “travel” to anywhere in the data distribution. The street is the filter F , and the address
is the filter response.

Now consider an image reconstruction

I =

k∑
i=1

aiFi + ε

in which I is an image, k is the number of active neurons, ε is the residual, ai is the filter response, Fi
is the filter, and N2 is the size of the image. Compact coding states that a vector I ∈ R2, projected to
a low-dimensional space, can be encoded into K neurons in a non-orthogonal manner with few principal
components, in which K << N2.

A sparse representation is the opposite. For sparse coding, M neurons are used to encode N2 repre-
sentations, in which N2 << M . For sparse coding, an overcomplete basis is used, primarily composed of
zeros for a total of M encodings, many of which are redundant. How does one come up with the important
parts of an image to represent, i.e., the M encodings? The low-dimensional spikes for Fig. 2.6 are used.
Recall that each filter response reveals a statistical property of the distribution, so together they may form
a base dictionary for image reconstruction. Analogously, when one asks for directions to reach a town,
usually the response will include street names and other low-dimensional descriptions or features, just as
is done in sparse coding. A key point to remember, then, is that the point cloud formed by natural images
contains many low-dimensional spikes, reflective of the high kurtosis of natural images, which may be used
as guides, or viable directions, to traverse and better learn or represent the image space.

2.5 Scale Invariance

Figure 2.8: A natural image scaled through 1x, 2x, 4x, and 8x downsampling can be observed. Although
the fixed-size filter kernel (shown in red) captures more information for each downsampled scale, the image
statistics remain invariant.

In addition to the heavy-tailed histograms of Gabor filter responses, another interesting observation
reported by Ruderman (94) [210] and Zhu and Mumford (97) [278] is that histograms of gradient-filtered
images are consistent over a range of scales (see Fig. 10.4). This is the fourth statistical observation for

29

Figure 2.9: First two plots: histograms of gradient-filtered natural image from Fig. 2.8 at three different
scales. Last plot: log of the histograms of gradient-filtered Gaussian noise image at the same three scales.
From this, it can be observed that high kurtosis is a property of natural images and not, e.g., Gaussian noise,
and the level of kurtosis persists over different scales.

natural images: scale invariance. Specifically, for a natural image I, a pyramid with a number of n scales
can be built, such that I = I(0), I(1), ..., I(n), and I(s+1) is obtained by averaging every block of 2× 2 pixels
in I(s). The histograms of gradients ∇1I

(s)(x) for natural images (first two plots) and for Gaussian noise
(last plot) are shown in Fig. 10.4, for three scales s = 1, 2, 3 shown in Fig. 2.8. Note that, for natural
images, despite scaling down the image, roughly the same amount of kurtosis is observed in the histograms
for three different scales.

Figure 2.10: Scale invariance drops off after a certain point.

To better illustrate the scale invariance property of natural images, here a toy example is presented: a 2D
invariant world consisting of only 1D line segments. Fig. 2.11 (a) shows an image of the simulated world. In
the image, each line segment is determined uniquely by its center location (xi, yi), orientation θi, and length
ri. The lines are independently distributed in terms of geometric features. The center of a line is selected
from the image plane uniformly. Its orientation, measured as the angle formed with the horizontal line, is

30

(a) 1024× 1024 (b) 512× 512 (c) 256× 256

(d) crop from 1024× 1024 world (e) crop from 512× 512 world (f) crop from 256× 256 world

Figure 2.11: The top three figures represent the 2D toy world with different pixel sizes; the bottom ones are
128× 128 pixel crops from the corresponding figures.

also uniformly distributed over [0, π]. The length of a line follows a cubic probability density function, i.e.,
p(r) ∝ 1

r3 . In reality, ri can be sampled from p(r) using inverse transform sampling. While the lines are
i.i.d. in geometric features, the overall density of the segments is controlled by a Poisson distribution. That
is, in each unit area, the number of line segments has a constant mean. The toy world can be constructed
by the above rules, and it can be observed that it has the scale-invariant property similar to that of natural
images. To be more specific, Fig. 2.11 (a) is of size 1024× 1024 pixels. Fig. 2.11 (b) and (c) are obtained
by down-sampling the original image to 512× 512 pixels and 256× 256 pixels, respectively. Notice that in
down-sampling, the long lines are truncated and the lines shorter than a pixel are discarded. Then, 128×128
pixel patches can be cropped from these three images. Indeed, the three crops are identical to each other and
hard to tell apart. This shows that the 2D toy world is scale-invariant in the sense that the image features are
identical across scales. In fact, parallels can be drawn between the geometric features of the line segments
and the gradient histograms of natural images. These statistics remain the same no matter which scale the
images are viewed.

31

3

Textures

Texture is an important characteristic of the appearance of objects in natural scenes and is a crucial cue in vi-
sual perception. It plays an important role in computer vision, graphics, and image encoding. Understanding
texture is an essential part of understanding human vision.

Texture analysis and synthesis has been an active research area, and a large number of methods have
been proposed, with different objectives or assumptions about the underlying texture formation processes.
In computer vision and psychology, instead of modeling specific texture formation processes, the goal is
to search for a general model which should be able to describe a wide variety of textures in a common
framework, and which should also be consistent with the psychophysical and physiological understanding
of human texture perception.

3.1 The Julesz Quest

(a) (b) (c)

Figure 3.1: (a) presents a section of the marble you observe. (b) presents another section of the same marble
piece. (c) is a defective area of the marble.

Imagine a scenario in which you walk into a store to purchase marble tiles for your new home. You
search for the most consistent pattern, so your new floor looks uniform and the pieces are indistinguishable
from one another. Suddenly, you notice a piece of marble, as shown in Fig. 3.1a and Fig. 3.1b, whose
patterns you appreciate. However, as you continue inspecting this piece of marble, you suddenly catch

33

attention of an area such as depicted in Fig. 3.1c. You ask yourself the question, “Is the texture in this
marble patch consistent with the rest of the marble?” “What features of a texture make it distinguishable
from another texture?” These questions may seem ostensibly simple to answer, but it is fundamentally
difficult to exactly define the distinguishing features that set textures apart from one another.

Differentiating differences in texture patterns seems an intuitive and easy task for humans, but why are
we able to differentiate the textures so easily? “The defects in the texture,” one may answer, but how are
the raw visual signals converted so that human brains can easily distinguish the defective patterns? How are
texture patterns represented in human brains in general? This is a question that has troubled psychologists
for many years until Julesz initiated formal research on texture modeling.

In his seminal paper in 1962 [124], Julesz conducted research on textures and asked the following fun-
damental question: What features and statistics are characteristic of a texture pattern, so that texture pairs
that share the same features and statistics cannot be told apart by pre-attentive human visual perception?

As illustrated by Fig. 3.2, the texture pattern formed by the + signs pops out from the surrounding
pattern at first glance (so-called pre-attentive vision) in the left panel, but it merges with the surrounding
pattern in the right panel. We have to examine the right panel attentively in order to tell the two texture
patterns apart.

Figure 3.2: Julesz texture pairs: the texture pattern formed by the + signs pops out from the surrounding
pattern in the left panel, but it merges with the surrounding pattern in the right panel.

The first general texture model was proposed by Julesz in the 1960s. Julesz suggested that texture
perception might be explained by extracting the so-called ‘k-th order’ statistics, i.e., the co-occurrence
statistics for intensities at k-tuples of pixels [124]. A key drawback of this model is that, on one hand, the
amount of data contained in the k-th order statistics is big and thus very hard to handle when k > 2. On
the other hand, psychophysical experiments show that the human visual system does extract at least some
statistics of order higher than 2 [49].

In mathematical terms, a set of all texture images with the same features and statistics can be written as

ΩI = {I : Hi(I) = hi, i = 1, ...,K} (3.1)

where I is a texture, each Hi is a chosen feature/statistics, and K is the number of features chosen to be
extracted such that texture patterns become indistinguishable when all features are extracted and matched.
The search for the Hi has gone a long way beyond Julesz’s statistical conjecture. Methods employed include
co-occurrence matrices, run-length statistics, sizes and orientations of various textons, cliques in Markov
Random Fields, and dozens of other measures. All these features have rather limited expressive power.

Here, it is worth noting that the modeling of texture concerns not only the data and distributions in the
image space but also depends on human perception influenced by task, or purpose. In Julesz’s quest, the
criterion for judging whether two texture images belong to the same category depends on the human visual

34

system, which is trained for various tasks. Julesz carefully reduces task-dependence by testing in a pre-
attentive stage with no specific purpose; nevertheless, the human vision system has been trained ahead of
the experiments. Later experiments show that human vision can learn and adapt to tell apart texture images
after long training. This task-dependence sets apart models in vision from those in physics.

In the subsequent chapters, let us illuminate the quest for features and statistics describing texture pat-
terns.

3.2 MRF & Clique-Based Gibbs Models

One approach for pursuing texture features is statistical modeling, which characterizes texture images as
arising from probability distributions on random fields [39]. These modeling approaches involve only a
small number of parameters and thus provide concise representation for textures. More importantly, texture
analysis can be posed as a well-defined statistical inference problem. These statistical approaches enable us
to not only infer the parameters of underlying probability models of texture images but also to synthesize
texture images by sampling from these models. Checking whether the synthesized images have similar
visual appearances to the textures being modeled provides a rigorous way to test the model.

An issue, however, is that many of these statistical models, such as Markov random fields and clique-
based Gibbs models, are too simple and thus suffer from a lack of expressive power to capture the fidelity
of natural images.

3.2.1 Markov Random Fields (MRF)

Markov Random Fields (MRF) models were popularized by Besag in 1973 [18] for modeling spatial inter-
actions on lattice systems and were used by Cross and Jain in 1983 [39] for texture modeling. An important
characteristic of MRF modeling is that global patterns are formed via stochastic propagation of local inter-
actions, which is particularly appropriate for modeling textures as they are characterized by global but not
predictable repetitions of similar local structures.

Concretely, a Markov random field is a probability distribution over random variablesX1, ..., Xn defined
by an undirected graphG = (V,E), where the nodes in V correspond to the variablesXi. Before illustrating
the special properties of MRF models, we first introduce some notation to formalize graphs. In an undirected
graph G, two nodes s, t are called neighbors if there is an edge between them. The neighborhood of a site
s is defined as the set of all its neighbors, i.e., Ns = {t : (s, t) ∈ E, t ∈ V }. Moreover, the neighborhood
system of G is the set of all neighborhoods in the graph. We denote it asN = {Ns : s ∈ V }. For any patch
A in graph G, define XA as a window of observation. The boundary of patch A is thus NA = {t : (s, t) ∈
E, s ∈ A, t /∈ A}. Also, we call C ⊂ V a clique of G if for any two sites s, t ∈ C, we have (s, t) ∈ E.
The depiction on the right-hand side of Fig. 3.3 shows a simple general MRF, in which, for example, the
neighbors of node B are C, D and E, and nodes B, D, and E form a three-node clique. A distinct feature
of MRF models is that the random variables defined on the nodes satisfy the local Markov properties. That
is, each variable Xi is conditionally independent of all other variables given its neighbors. Therefore, MRF
can be used to model a set of local characteristics.

Based on the qualities of MRF models, we can consider a texture as a realization from a random field
I defined over a spatial configuration D. For example, D can be an array or a lattice. We denote Is as the
random variable at a location s ∈ D, and letN = {Ns, s ∈ D} be the neighborhood system ofD satisfying:
1) s /∈ Ns and 2) s ∈ Nt ⇐⇒ t ∈ Ns. The pixels in Ns are the neighbors of s. A subset C of D is a clique
if every pair of distinct pixels in C are neighbors of each other; C denotes the set of all cliques.

Formally, the following gives a definition of MRF distributions on images.

35

Figure 3.3: On the left is an example lattice structure of a MRF. On the right is a toy example of a general
MRF in which A and C are neighbors of each other, thus forming a two-node clique, and B, D, E form a
three-node clique.

Definition. p(I) is an MRF distribution with respect toN if p(Is | I−s) = p(Is | INs), in which I−s denotes
the values of all pixels other than s, and for A ⊂ D, IA denotes the values of all pixels in A.

In addition, an MRF distribution is closely related to a Gibbs distribution, which is defined below. In
statistical mechanics, a Gibbs distribution gives the probability that a system will be in a certain state as a
function of the state’s local properties, such as the energy and the temperature of the system. Consequently,
the Gibbs model can be viewed as a set of potentials defined on cliques.

Definition. p(I) is a Gibbs distribution with respect to N if

p(I) =
1

Z
exp{−

∑
C∈C

λC(I(C))}, (3.2)

where Z is the normalizing constant (or partition function), and λC(·) is a function of intensities of pixels in
cliqueC (called potential ofC). Some constraints can be imposed on λC for them to be uniquely determined.

In fact, a MRF distribution is equivalent to a Gibbs distribution. The Hammersley-Clifford theorem
establishes their equivalence [18]:

Theorem 1. For a given N , p(I) is a MRF distribution⇐⇒ p(I) is a Gibbs distribution.

This equivalence provides a general method for specifying a MRF on D, i.e., first choose an N , and
then specify λC . The MRF is stationary if for every C ∈ C, λC depends only on the relative positions of its
pixels. This is often assumed in texture modeling.

Here the λC(·) function, which extract statistics from an input image, can be seen as the feature repre-
sentation Hi of the image as introduced in Section 3.1.

Often enough, a texture is considered as a MRF in a lattice system with each pixel represented by a
node, as shown on the left of Fig. 3.3. The neighboring pixels form a clique and pixels farther away have
less effect on the pixel in question. This paired system leads us to consider auto-models (Besag 1973), MRF
models with pair potentials.

3.2.2 Ising & Potts Model

In discussing MRF models with pair potential, we examine two important models developed in history, the
Ising model and the Potts model.

In general, auto-models with pair potential models have characteristics of λC ≡ 0 if |C| > 2, and p(I)
has the following form:

36

Figure 3.4: Graphical view of Ising Model with all positive spin.

p(I) =
1

Z
exp{

∑
s

αsIs +
∑
t,s

βt−sItIs}, (3.3)

in which β−t = βt and βt−s ≡ 0 unless t and s are neighbors. A MRF model with pair potentials, as defined
above, is commonly specified through conditional distributions:

p(Is | I−s) ∝ exp{
∑
s

αsIs +
∑
t

βs−tItIs},

in which the neighborhood is usually of order less than or equal to three pixels, and further restrictions are
usually imposed on g for p(Is | I−s) to be a linear regression or the generalized linear model.

One of the classic MRF models with pair potentials is the Ising model. The Ising model was first
proposed by Ernst Ising to study ferromagnetism. Similar to texture models, the Ising Model also considers
lattice systems, in which each node Is ∈ {+1,−1}. To attach physical meaning to this construction, each
node, or site, can be viewed as an electron having a particular “spin.” With Is = −1, electron s points down,
and with Is = +1, the electron points up. An Ising Model with all positive spins is shown in Fig. 3.4.

How do the electrons in the lattice interact with each other? What is the energy of the system? To answer
these questions, the Ising Model considers two types of interactions that affect the energy of the system: the
external field and interaction between neighboring electrons. Together, they form an energy function called
a Hamiltonian, written as

H (I) = −
∑
<s,t>

βIsIt −
∑
t

αIt (3.4)

in which β represents the strength of magnetization and dictates electron interactions, and α represents
strength of external field on each electron.

The entire configuration of the lattice system is, similar to a general MRF, given by

p(I) =
1

Z
exp{−H (I)

kT
} (3.5)

in which k is the Boltzmann constant and T is the temperature. The higher the temperature, the more random
the particles become, and the more uniform the probability distribution becomes. An example sampling of
the Ising Model using different β values is shown in Fig. 3.5.

The Potts Model is a generalization of the Ising Model in a lattice system. Instead of having binary state,
each particle has n spin angles, i.e., Is ∈ {θ0, θ1, ..., θn−1}. Therefore, the energy Hamiltonian is given by

37

Figure 3.5: Example sampling of Ising Model with different mean and variance. From left to right, β is
0.35, 0.40, and 0.43, respectively.

H (I) = −
∑
<s,t>

βδ(Is, It)−
∑
t

αIt (3.6)

in which δ(·, ·) is the Kronecker delta function. Its distribution is in the same form as that of Ising Model.
The advantage of pair-potential models such as the Ising and Potts models is that the parameters in

the models can be easily inferred by auto-regression. However, these models are severely limited in the
following two ways: 1) the cliques are too small to capture features of texture, and 2) the statistics on the
cliques specify only first-order and second-order moments, i.e., mean and covariance, respectively. Yet
many textures have local structures much larger than three or four pixels, and the covariance information, or
equivalently the spectrum, cannot adequately characterize textures, as suggested by the existence of distin-
guishable texture pairs with identical second-order or even third-order moments, as well as indistinguishable
texture pairs with different second-order moments [49]. Moreover, many textures are strongly non-Gaussian,
regardless of neighborhood size.

The underlying reason for these limitations is that Equation 3.2 involves too many parameters if we
increase the neighborhood size or the order of the statistics, even for the simplest auto-models. This suggests
that we need carefully designed functional forms for λC(·) to efficiently characterize local interactions as
well as the statistics on local interactions.

3.2.3 Gaussian Markov Random Fields (GMRF)

An early statistical model for texture patterns was the Gaussian Markov Random Field (GMRF). This family
of models satisfies the properties of a MRF model with the additional restriction that the joint distribution
of all nodes is multivariate normal. Important statistical properties of natural images can be observed in the
GMRF model, suggesting that certain basic features of natural images are represented by this well-defined
parametric family. The idea of matching fundamental features of observed images to synthesize new images
with the same appearance provides inspiration for more complex models such as the FRAME model (see
Section 3.4).

Formally, a GMRF is a graph G = (V, E) where each node corresponds to a single dimension of a
multivariate Gaussian x ∼ N(µ,Q−1) with a non-singular precision matrix Q. Edges of G are determined
by the relation

Qk,` 6= 0⇔ {k, `} ∈ E .

Conditional independence satisfies xk ⊥ x` |x−k` ⇔ Qk,` = 0, as can be seen from direct inspection of the
multivariate Gaussian density. Therefore, xk |x−k ∼ xk | N (xk), in which N (xk) = {x` : Qk,` 6= 0, k 6=

38

`} is the neighborhood of xk, i.e., the distribution of a single node xk given the rest of the nodes depends
only on a subset of nodes which are connected to xk in the GMRF graph. Note that the edges often represent
nodes that are spatially related, such as nearby pixels within an image.

Consider an N ×M image I ∼ N(0, β−1Q−1), in which I(x, y) denotes pixel at location (x, y) (note
that this is different from the previous graph structure notation, in which Is denotes node s in I), β > 0 is
the coupling strength between pixels, and

Q(x1,y1),(x2,y2) =

1 (x1, y1) = (x2, y2)
−1

4 (x2, y2) ∈ N (I(x1, y1))
0 else

with neighborhood structureN (I(x, y)) = {I(x+ 1, y), I(x− 1, y), I(x, y+ 1), I(x, y− 1)}. Suppose that
the torus boundary condition is used, so that I(x+N, y) = I(x, y) and I(x, y +M) = I(x, y). This model
has the density

p(I) =
1

Z
exp

{
−β
∑
x

∑
y

(I(x+ 1, y)− I(x, y))2 + (I(x, y + 1)− I(x, y))2

}
, (3.7)

and the conditional expectation for each pixel

E[I(x, y)|N (I(x, y))] =
1

4
(I(x+ 1, y) + I(x− 1, y) + I(x, y + 1) + I(x, y − 1))

is the average of the neighboring pixels in the image. In the limiting case of infinitesimally small pixels, the
discrete GMRF model converges to the continuous density

p(I) =
1

Z
exp

{
−β
∫
x

∫
y
(∇xI(x, y))2 + (∇yI(x, y))2dy dx

}
. (3.8)

Several important observations follow from analysis of the continuous analogue of the discrete GMRF
density. First, the power law phenomenon observed in natural images can be explicitly derived for the
density in Equation 3.8. Recall that the Fourier transform Î(ξ, η) of an image I(x, y) is given by

F (I) = Î(ξ, η) =

∫
x

∫
y
I(x, y)e−i2π(xξ+yη) dy dx.

Algebraic manipulation shows that F (∇xI) = 2πiξÎ and F (∇yI) = 2πiηÎ . The well-known Plancherel
Theorem states that a function g and its Fourier transform G = F (g) satisfy the relation∫

|g(t)|2 dt =

∫
|G(η)|2 dη,

meaning that the L2 functional norm is preserved by the Fourier transform. Bringing all this together shows

β

∫
x

∫
y
(∇xI(x, y))2 + (∇yI(x, y))2dy dx = 4π2β

∫
ξ

∫
η
(ξ2 + η2)|Î(ξ, η)|2 dηdξ

so that the potential function in Equation 3.8 can be rewritten in terms of Î . Moreover, the separable form
of the right-hand side of the above equation shows that

p(Î(ξ, η)) ∝ exp
{
−4π2β(ξ2 + η2)|Î(ξ, η)|2

}
39

independently of other states of Î . This shows that Î(ξ, η) is a Gaussian with parameters

E[Î(ξ, η)] = 0 and V ar[Î(ξ, η)] =
1

8π2β(ξ2 + η2)
.

Therefore,E[|Î(f)|2]1/2 ∝ 1
f so that the GMRF model p(I) satisfies the scale invariance observed in natural

images, as discussed in Section 2.3.
A second important property of the GMRF model is its connection to the heat equation. Considering

again the potential function of a GMRF model

H(I(x, y)) = β

∫
x

∫
y
(∇xI(x, y))2 + (∇yI(x, y))2dy dx,

we will show that generating an image according to the dynamic

dI(x, y, t)

dt
= −δH(I(x, y, t))

δI
, ∀x, y

is equivalent to the heat-diffusion equation

dI(x, y, t)

dt
= ∆I(x, y),

in which ∆ = ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator.
Using an Euler-Lagrangian equation for two variables,

δJ

δf
=
∂L

∂f
− d

dx
(
∂L

∂fx
)− d

dy
(
∂L

∂fy
),

in which J(f) =
∫
y

∫
x L(x, y, f, fx, fy)dxdy and f is a function of x and y.

Setting f = I, L = (∇xI)2 + (∇yI)2, and J = H , we obtain

dI(x, y, t)

dt
= −δH(I(x, y, t))

δI

= −
[
∂[(∇xI)2 + (∇yI)2]

∂I
− d

dx

[
∂[(∇xI)2 + (∇yI)2]

∂(∇xI)

]
− d

dy

[
∂[(∇xI)2 + (∇yI)2]

∂(∇yI)

]]
= 0 +

d

dx
[2(∇xI)] +

d

dy
[2(∇yI)]

= 2(
∂2I

∂x2
+
∂2I

∂y2
)

= 2∆I

Ignoring the constant factor, we have shown that in fact the learning dynamics of an image modeled by
a GMRF potential function is equivalent to the dynamics modeled by the heat-diffusion equation.

Despite interesting connections to statistical properties of natural images and the heat-diffusion equation,
the GMRF model is still quite restricted. Interesting local structures exist but the joint pixel density is a
unimodal Gaussian. The GMRF model can capture aspects of the local regularity found in natural images
but nothing else. Therefore, the GMRF model from Equation 3.7 is not capable of serving as a probability
density for even simple image patterns. The GMRF model can represent certain properties of an image
(specifically, the tendency of nearby pixels to have similar intensity), but it cannot account for the formation
of visual patterns. In the following sections, we will see how the GMRF potential from Equation 3.7 can be
adapted as one of many filters (in particular, a gradient filter) whose joint features can be used to synthesize
realistic images.

40

3.2.4 Advanced Models: Hierarchical MRF and Mumford-Shah Model

In reality, we often encounter images with multiple types of textures, each occupying a set of regions in the
image domain. In these situations, we need more powerful models to deal with the interaction of distinct
texture regions.

When several texture patterns are present in an image, the boundaries of different regions need to be
specified. Often, the simple MRF models, including the GMRF model, are not expressive enough in encod-
ing this kind of knowledge in images. For example, we might expect long, straight edges to be penalized in
some images, but the pixel intensities alone do not accurately reflect the existence of edge elements. Geman
and Geman [78] introduce the hierarchical MRF model for the MAP image restoration problem and describe
the images by both pixel intensities and edge continuity. Specifically, an image I = (F,L) is modeled as a
MRF of two processes. The intensity process F is a simple MRF of observable pixel intensities as discussed
in Section 3.2.3). The line process L is another MRF of unobservable edge elements. We define a line site
d as placed midway between each vertical or horizontal pair of pixels. The set D of all line sites is thus all
possible locations of the edge elements. While F(x, y) measures the intensity at a pixel, L(x, y) represents
a lack, or presence (and orientation) of an edge at this specific site. The line process L can affect a pixel’s
neighborhood. For instance, if an edge is present at a line site, the potential over the pair-clique consisting
of the pixels separated by this line site is zero. Therefore, these two pixels will not influence the other’s
intensity, and the bonding between them is broken. The Gibbs distribution used to define the hierarchical
MRF is

p(F = f,L = l) =
1

Z
exp{−

∑
C∈C

λC(f, l)}. (3.9)

With the hierarchical MRF, we can model more complicated image structures and define new types of tasks
in computer vision, as it allows us to analyze the discontinuity in images from a new perspective.

Another technique that facilitates the modeling of multiple textures is the Mumford-Shah model. This
model aims to segment an image into a few simple regions, keeping the color of each region as smooth as
possible. It utilizes the Mumford-Shah energy functional to complete three tasks simultaneously. First, the
functional measures how good the model approximates the observed image. Second, it asks that the model
varies slowly except at boundaries. Third, it requires the set of contours to be as short, and hence as simple
and straight, as possible.

3.2.5 Selecting Filters and Learning Potential Functions

The models mentioned thus far have equipped us with the tools needed to describe and generate a variety of
textures, as long as we select appropriate image filters and learn optimal potential functions and parameters
for the learned probability distributions. The questions then become, given one or a set of observed texture
images, how do we select filters that will most completely capture the image statistics? And how do we
learn the optimal potential functions and parameters? These questions will be answered as we expound the
FRAME model in Section 3.4. First though, it will be helpful to review some of the more well-known filters
in vision.

3.3 Filters for Early Vision

Due to the limitations of clique-based models, researchers have also explored feature extraction from the
perspective of image filtering. In the various stages along the visual pathway, from the retina, to V1, to
the extra-striate cortex, cells with increasing sophistication and abstraction have been discovered: center-
surround isotropic retinal ganglion cells, frequency and orientation selective simple cells, and complex cells

41

that perform non-linear operations. Here we focus on filtering theory inspired by the multi-channel filtering
mechanism discovered and generally accepted in neurophysiology, which proposes that the visual system
decomposes the retinal image into a set of sub-bands. These sub-bands are computed by convolving the
image with a bank of linear filters, followed by some non-linear procedures [17]. Considering again the
definition Ω(h) = {I : Hi(I) = hi, i = 1, ...,K}, it is now natural, after convolving the image with a bank
of linear filters, to use a marginal statistic (e.g., a histogram) to represent a feature Hi of an image.

Filtering is a process that changes pixel values of a given image, in an effort to extract valuable infor-
mation such as clusters and edges. Fig. 3.6 provides an example of typical image filtering.

(a) (b)

Figure 3.6: (a) presents an image and (b) presents a filtered version of the image.

An integral part of image processing, filters provide biologically plausible ways of extracting visual
information from raw input signals. In the coming section, we will explore different types of filters that
extract different feature information from images.

3.3.1 Correlation & Convolution

Before we introduce specific types of filters, it is important to understand how filters are applied to images.
One method of linear filtering is correlation, which uses filters to obtain a weighted combination of all pixels
in a small neighborhood. Suppose an image I is defined on an N × N lattice D, and I(x, y) ∈ L is the
intensity value of an image I at location (x, y) and L is an interval on the real line or a set of integers
representing pixel intensity. Suppose also that filter F is defined on an M ×M lattice much smaller than
the lattice of I. Correlation is computed as

I(x, y)⊗ F =
∑
(k,l)

I(x+ k, y + l)F (k, l) (3.10)

in which ⊗ denotes correlation and each F (k, l) is a filter coefficient. To maintain the image size, we pad
the boundary of the original image with enough zeros so that the filtered output image is the same size.

Correlation measures similarity between a filtered region and the filter itself, but to extract meaningful
information, a more commonly used method is convolution. Different from correlation, convolution is
defined as

I(x, y) ∗ F =
∑
(k,l)

I(x− k, y − l)F (k, l) (3.11)

where ∗ denotes the convolution operation. It appears that convolution is correlation with both axes flipped.
The motivation for using convolution instead of correlation is that it is associative, in addition to being

42

commutative and distributive. This means that if an image needs to be convolved with multiple filters, the
filters can be convolved with each other first before being applied to the image. A detailed proof of the
mathematical properties of convolution is not of our interest for this book, but to intuit why convolution is
associative, notice that the Fourier transform of convolution is a product in the frequency domain, which is
clearly associative.

Knowing some basic operations for image processing, let us introduce some classical filters.

3.3.2 Edge Detection Filters

An edge in an image consists of a sudden change of pixel intensity, and to detect them, a natural decision is
to detect the change of pixel values throughout the image. If an image exists on a continuous domain, we
can represent change in pixel intensities by derivatives

∇I = [
∂I

∂x
,
∂I

∂y
].

To only account for horizontal edges or vertical edges, we can represent changes in pixel intensities by
[∂I∂x , 0] or [0, ∂I∂y], respectively. The gradient direction θ, as in calculus, is

θ = tan−1(

∂I
∂y

∂I
∂x

)

and the gradient strength is

‖∇I‖ =

√
(
∂I

∂x
)2 + (

∂I

∂y
)2.

In practice, however, images consist of discrete pixels, so we need a discrete approximation of image
derivatives. Note that the definition of the derivative with respect to the x-coordinate is

∂I(x, y)

∂x
= lim

h→ 0

I(x+ h, y)− I(x, y)

h

and its discrete counterpart is
∂I(x, y)

∂x
≈ I(x+ 1, y)− I(x, y)

1
.

To implement this derivative using a convolution, we can use a simple filter

F =
[
−1 1

]
.

However, a more commonly used 1D filter for edge detection is

F =
[
−1 0 1

]
which corresponds to, in the continuous domain, a derivative definition that extends by a small amount in
both directions:

∂I(x, y)

∂x
= lim

h→ 0

I(x+ h, y)− I(x− h, y)

2h
.

Note that the constant factor 2 is neglected in the filter since applying the unnormalized filter consistently
will not affect relative intensity of the resulting image.

43

In the 2D case, three well known edge detection filters are the Prewitt, Sobel, and Roberts filters, which
are displayed in the same order below.−1 0 1

−1 0 1
−1 0 1

 −1 0 1
−2 0 2
−1 0 1

 [
0 1
−1 0

]
Both the Prewitt and Sobel filters detect edges in the x-direction, and detection in the y-direction is

similar but with the filter weights transposed. However, the Sobel filter is more commonly used between
these two because it provides smoothing in the direction perpendicular to the direction of the edge detection.
Details on smoothing will be provided in the next section. Images filtered by the Prewitt filter may also suffer
from any noise in the original image. The Roberts filter detects edges in the diagonal direction instead.
Fig. 3.7 shows an image filtered by each filter.

(a) (b) (c) (d)

Figure 3.7: An image filtered by Prewitt, Sobel and Roberts filters, respectively.

3.3.3 Gaussian Filter

A Gaussian filter is used for smoothing and blurring. As indicated by its name, the filter resembles a
Gaussian density function. Note that a multivariate Gaussian function centered at the origin can be written
as

G(~x | Σ) =
1√

(2π)n|Σ|
exp

{
−1

2
(~x− ~x0)ᵀΣ−1(~x− ~x0)

}
in which G denotes a Gaussian function, ~x is an n-dimensional variable centered at ~x0, and Σ is the co-
variance matrix. However, for the purpose of image smoothing, a Gaussian filter is typically assumed to be
independent among different coordinates. That is, in two dimensions, the filter can be written as

G(x, y | x0, y0, σx, σy) =
1

2πσxσy
e−((x−x0)2/2σ2

x+(y−y0)2/2σ2
y)

where by convention it is assumed that σx = σy = σ. Its discrete counterpart can be represented by filter

1

16

1 2 1
2 4 2
1 2 1

 .
Varying σ allows one to vary the width of the Gaussian distribution, controlling the degree of smoothing.

A larger σ corresponds to a larger filter size with each convolution accounting for more neighboring pixels.
Note that Gaussian filtering is a form of a weighted sum with the highest weight at the center, effectively
smoothing out noises in a close vicinity. A Gaussian-smoothed image is shown in Fig. 3.8.

44

(a) (b)

Figure 3.8: An image smoothed by a Gaussian filter

3.3.4 Derivative of Gaussian & Laplacian of Gaussian Filter

Returning to edge detection, a major problem for Sobel and Prewitt filters is that they are very sensitive
to noise due to a hard subtraction of neighboring values. It is therefore common to first conduct Gaussian
smoothing before applying image gradients. Since convolution is associative, we can directly apply gradient
operations to a Gaussian filter before applying them to the image itself.

This suggests that we need to calculate the first derivative of the Gaussian, and Fig. 3.9 shows the first
derivatives, with respect to both the x- and y-coordinates, and their corresponding filters. Convolving a
Gaussian filter with an image allows for both smoothing and edge detection, and it is less sensitive to noise
than Prewitt or Sobel filters.

(a)

(b) (c)

(d) (e)

Figure 3.9: (a) Gaussian density (b) Density of x-derivative of Gaussian (c) Density of y-derivative of Gaus-
sian (d) Filter visualization of x-derivative of Gaussian (e) Filter visualization of y-derivative of Gaussian

For edge detection purposes, first derivatives of the Gaussian are commonly used, but they are still some-
what undesirable due to the resulting thickness of detected edges, induced by σ in the Gaussian function.
Second derivatives, on the other hand, represent edges with zero intensity, as the first derivative transforms
edges to max/min intensity after filtering. This infinitely thin line of zero crossing is more desirable for edge
detection. To calculate the second derivative, the Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2 is most commonly used.

45

Similar to the derivation of image gradients, the second derivative in the x direction can be written as

∂2I(x, y)

∂x2
= lim

h→ 0

∂I(x+h,y)
∂x − ∂I(x−h,y)

∂x

2h

= lim
h→ 0

limt→ 0
I(x+h,y)−I(x+h−t,y)

t − limt→ 0
I(x−h+t,y)−I(x−h,y)

t

2h

≈
I(x+1,y)−I(x,y)

1 − I(x,y)−I(x−1,y)
1

1
= I(x+ 1, y)− 2I(x, y) + I(x− 1, y).

This corresponds to an (unnormalized) discrete filter[
1 −2 1

]
.

In 2D, it is not difficult to see that a simple Laplacian filter becomes0 1 0
1 −4 1
0 1 0

 .
However, similar to image gradients, the Laplacian operator is extremely sensitive to noise in the input.

Therefore, Gaussian smoothing is usually applied before a Laplacian operation. As the Laplacian can also
be represented by a convolution as shown above, it can be applied to a Gaussian filter before being applied
to the image. The resulting filter is named the Laplacian of Gaussian (LoG or LG). This gives a continuous
formulation

LoG(x, y | x0, y0, σx, σy) =

−
[

1

2πσ3
xσy

[
1− (x− x0)2

σ2
x

]
+

1

2πσxσ3
y

[
1− (y − y0)2

σ2
y

]]
exp{−(

(x− x0)2

2σ2
x

+
(y − y0)2

2σ2
y

)}.

Fig. 3.10 shows both the probability density function of the Gaussian and the Laplacian of Gaussian.
For the Laplacian of Gaussian, the uphill area surrounding a “valley” indicates that, by convolving it with
an image, the low-intensity side of an edge in the image will rise to have high intensity before dropping to
zero intensity and even lower, before then rising again to a high intensity on the other side of the edge. An
example of filtering using the Laplacian of Gaussian is shown in Fig. 3.11.

(a) (b)

Figure 3.10: (a) Density plot of the Gaussian and (b) the second derivative of the Gaussian

46

(a) (b)

Figure 3.11: An example of filtering using the Laplacian of Gaussian

3.3.5 Gabor Filter

Much effort has been spent on modeling radially-symmetric center-surround retinal ganglion cells. One
such simple model for this purpose is the Laplacian of Gaussian introduced above with σx = σy = σ.

Yet, as retinal ganglion cells respond to specific frequency bands, Gabor filters also provide a good way
to extract texture patterns from an image under specific frequencies [43]. In addition to being frequency-
selective, Gabor filters are also directional-selective. Mathematically, a Gabor filter is a pair of cosine and
sine waves with angular frequency ω and η, respectively, and amplitude modulated by the Gaussian function.
Its general form is

Fω(x, y) = G(x, y | x0, y0, σx, σy) · S(x, y | ω, η) (3.12)

in which G(x, y | x0, y0, σx, σy) is a Gaussian function, S(x, y | ω, η) = exp{−i(ωx + ηy)} is a wave
function, and φ = arctan(η/ω) is the direction of the wave.

Here Fω defines a Gabor filter that matches image regions with frequency ω in the x-direction and
frequency η in the y-direction. High-frequency filters will match high-frequency patterns whereas low
frequency filters will match low-frequency patterns.

Gabor filters are closely related to Gabor wavelets, which serve as bases for a Fourier Transform of an
image. Some examples of Gabor wavelets are shown in Fig. 3.12.

Figure 3.12: Gabor wavelets in different orientations and frequencies

The filters mentioned above are linear. Some functions are further applied to these linear filters to model
the non-linear functions of the complex cell. One way to model the complex cell is to use the power of each
pair of Gabor filters, |(F ∗ I)(x, y)|2. In fact, |(F ∗ I)(x, y)|2 is the local spectrum of I at (x, y) smoothed
by a Gaussian function. Thus, it serves as a spectrum analyzer.

47

Although these filters are very efficient in capturing local spatial features, some problems are not well
understood. First, given a bank of filters, how can we choose the best set of filters, especially when some are
linear while others are non-linear, or the filters are highly correlated with each other? Second, after selecting
the filters, how can we encapsulate the features they capture into a single texture model? These questions
will be answered in the remainder of the chapter.

3.4 The FRAME Model

Markov Random Fields provide us physical inspiration for modeling texture patterns despite some notable
limitations. Filters, on the other hand, afford a powerful and a biologically plausible way of extracting
features. Is there a way to combine the two classes of texture models? In this coming section, we propose a
modeling methodology which is built on and directly combines the above two important themes for texture
modeling. It is called the FRAME (Filters, Random field, and Maximum Entropy) model [281]. Before
continuing, however, you are encouraged to go over Chapter 9 and understand Maximum Entropy, Minimum
Entropy, and Minimax Entropy Principles, as they will be employed in this chapter in derivations.

3.4.1 Intuition and the Big Picture

Let image I be defined on a domain D where each Is ∈ L is the intensity value of image I at pixel s, and L
is an interval on the real line or a set of integers to represent pixel intensity. Without loss of generality, we
denote a feature as φ ∈ S = {φ(α), α = 1, 2, ...,K}, where K is the number of features in question. In the
FRAME model, each feature is typically a vector of histograms of activations (normalized or unnormalized)
that result from image I being convolved with a selected filter. As a reminder, a filter can be seen as a
low-dimensional space that pierces through the higher-dimensional image space. Accordingly, convolution
of the image I with the filter produces the projection of the image onto this low-dimensional space. The
set of projected histograms are a set of marginal distributions for the image; our goal is to match “enough”
marginal distributions that we can accurately model the observed image. An intuitive drawing is presented
as Fig. 3.13.

Figure 3.13: Suppose each point is an image and the red dot represents the selected image. Two filters are
seen as axes piercing through the image space. The features described by these two filters are represented
by the image’s projection (i.e., convolution with a filter) against the two axes.

48

Now given a set of observed images {Iobsi , i = 1, 2, ...,M} from a distribution f(I), we define feature
statistics of the observation as

µ
(α)
obs =

1

M

M∑
i=1

φ(α)(Iobsi), for α = 1, ...,K.

and the set of images that match the statistics of these features as

ΩI = {I : φ(α)(I) = µ
(α)
obs, α = 1, ...,K}.

Similarly, we can define the set of distributions that match the statistics as

Ωp = {p(I) : Ep[φ
(α)(I)] = µ

(α)
obs, α = 1, ...,K}.

We now have defined our our feature statistics. The next task is to pursue a suitable distribution p ∈ Ωp

that matches the observed distributions.
This pursuit process is iterative and two-fold. First, we selectK suitable filters from a given set of filters

to completely describe the most distinctive features of a texture. Second, we find the best parameterized
distribution to explain the current statistics given a fixed set of filters. This parameterized distribution can
be written as p(I; Λ;S), where Λ is the distribution parameters. Filter selection and distribution matching is
an iterative process, reminiscent of coordinate descent, minimizing differences between the true distribution
and the model distribution. Note that as we try to model pre-attentive processes (i.e., the subconscious
accumulation and processing of environmental information) in human brains when detecting textures, we
generally neglect training of filters and simply use pre-trained filters.

We make use of the Maximum Entropy Principle to pursue the best parameters Λ when the set of features
(parameterized by a set of filters) to be matched is fixed. The parameterized distribution is constrained to
match histograms of the filters’ activation generated from texture images. However, we do not want to
over-constrain our distribution since we should avoid adding extra information that may change the feature
statistics. That is, we only match statistics given by the selected features and no more, meaning that we
maximize entropy of our distribution while matching all the given features. More intuitively, we want to
learn the distribution of the texture, but not to learn each training texture images precisely, so that we are able
to generate new texture images that follow the same distribution as texture images in our training dataset but
not reproduce the same images that are already in our training dataset. Fig. 3.14 illustrates this intuition.

To match the statistics provided by the observed data, an extreme solution would be a distribution that
only concentrates on the data points themselves. However, this solution over-shrinks the constrained image
set, adding too many unnecessary constraints, and it results in a highly overfitted model that can hardly
generalize. Instead, we seek a distribution that exhibits maximum capacity under the current constraints.
Remember in the earlier chapters, we discussed that the capacity of a space is measured by the entropy of
the distribution defined for it. Thus, maximizing the entropy means finding the largest possible space.

As explained by the Maximum Entropy Principle, the solution to this constrained problem is in the form
of a Gibbs distribution:

p(I; Λ|S) =
1

Z(Λ)
exp{−

K∑
α=1

〈λ(α), φ(α)(I)〉}, (3.13)

where λ(α) is the Lagrange multiplier associated with feature φ(α) controlling the relative strength of acti-
vation, 〈· , ·〉 denotes inner product, and Λ = (λ(α), α = 1, ...,K).

49

Figure 3.14: The Maximum Entropy Principle gives us the most general distribution that matches the feature
statistics we choose. Here ΩIp1

and ΩIp2
are two possible distributions we learned to try to match the

feature statistics of the observed data points. ΩIp2
concentrates too much to the observed data points which

is representative of overfitting and poor generalization, while ΩIp1
is the more general one by applying the

Maximum Entropy Principle.

Figure 3.15: We can observe the min-max entropy process for training the FRAME model. Suppose we
are at ΩI0 and we have two filters we could select: F1 and F2. If either of them are selected, we update
our model based on the Maximum Entropy principle, which lends the largest capacity based on the current
constraint (e.g., preferring ΩIF1

to ΩI
F
′
1

). In choosing between F1 and F2, we want the one that lends the

largest reduction in the entropy of the parameterized distribution with respect to the feature space.

The Lagrange multipliers are unique. After the current distribution is found, we proceed to find a new
pre-trained filter to better model the texture pattern. Intuitively, we select the best filter that minimizes the
Kullback-Leibler (KL) divergence from f(I) to p(I; Λ, S). With simplications derived in the Minimum
Entropy Principle section, minimizing this KL divergence is equivalent to minimizing entropy of the param-
eterized distribution with respect to the feature space.

This pursuit process can be visualized as below:

Uniform = p(I; Λ0, S0) → p(I; Λ1, S1) → ... → p(I; ΛK , SK) ∼ f(I)

The matched statistics give an equivalence class of images Ω(h) = {I : Hi(I) = hi, i = 1, ...,K} in
which each I ∈ ΩI(h) is similar in the sense that their projected histogram statistics are similar. Therefore,
the more filters are chosen, the more constrained the distributions are, and the fewer images there will be
in the equivalence class of images. This model pursuit process is a process for gradually constraining the
image space to obtain a set of images that match the true data distribution. The pursuit process is also shown
in Fig. 3.16.

50

Figure 3.16: Reduction of constrained set of distributions from those sampled from uniform distribution,
which corresponds to the entire pixel space, to an equivalence class of images that match projected statistics
of the true samples. Here ΩIp1

represents the set of images drawn from p1, which follows a Gibbs distribu-
tion by the Maximum Entropy Principle. We perform this model pursuit process until images are close to
images from f(I), the true distribution.

The figure can be interpreted as follows. We start from a random uniform distribution and start selecting
a filter according to Minimum Entropy Principle. Then we use Maximum Entropy Principle to best match
the selected feature statistics. This gives ΩIp1

described by distribution p(I; Λ1, S1). The set of equivalence
class of images also decreases, as indicated by the shrinking ellipse. This iterative process continues until
our distribution is constrained enough so that it is indistinguishable from the observed distribution f(I).

An interesting analogy to this pursuit process is shepherding. At first, we can imagine that sheep wander
in an infinitely large area. At a certain time step, shepherds start guiding the sheep into a newly constructed
fenced area, which defines a constrained space. Not wanting to be constrained further, the sheep push back
against the fence, trying to escape. Shepherds then construct a new, smaller fenced area inside the last one
and guide the sheep into this smaller area, with the sheep again pushing back. This process is iterated until
the shepherds stop constructing fences.

Fig. 3.17 shows a toy example (images with 2 pixels) of this pursuit process. As shown, f(x, y) is the
true data distribution we try to model, and our distribution p(x, y) starts from random uniform and a feature
h1 is selected. Maximizing entropy of the constrained distribution gives us the second distribution. We
further select the next best feature h2 and match our distribution against it. We can see that now the p(x, y)
is already very close to f(x, y) and the process is stopped.

In the coming section, we derive the FRAME model and how it can be learned.

3.4.2 Deriving the FRAME model

With the bigger picture in mind, we now proceed to derive the FRAME model. We first fix a set of filters
and try to learn Λ.

To re-iterate our definition, let image I be defined on a discrete domain D, in which D can be a N ×N
lattice. For each pixel s ∈ D, Is ∈ L, and L is an interval ofR or L ⊂ Z . For each texture, we assume that
there exists a “true” joint probability density f(I) over the image space L|D|, and f(I) should concentrate
on a subspace of L|D| (projection of I onto the subspace) which corresponds to texture images that have
perceptually similar texture appearances.

51

Figure 3.17: A toy example pursuit process as described by FRAME.

Learning Potential Functions

Given an image I and a filter F (α) with α = 1, 2, ...,K for the indices of the filter, we let I
(α)
s = F (α) ∗Is be

the filter response at location s and I(α) the filtered image. The marginal empirical distribution (histogram)
of I(α) is

H(α)(z) =
1

|D|
∑
s∈D

δ(z − I(α)
s),

where z is a specific filter response and δ(·) is the Dirac delta function. The marginal distribution of f(I)
with respect to F (α) at location s is denoted by

f (α)
s (z) =

∫
I
(α)
s =z

f(I)dI = Ef [δ(z − I(α)
s)].

At first thought, it seems an intractable problem to estimate f(I) due to the overwhelming dimensionality
of image I. To reduce dimensions, we first introduce the following theorem.

Theorem 1. Let f(I) be the |D|-dimensional continuous probability distribution of a texture, then f(I) is a
linear combination of f (ξ), the latter are the marginal distributions on the linear filter response F (ξ) ∗ I.

Proof. By inverse Fourier transform, we have

f(I) =
1

(2π)|D|

∫
e2πi〈I, ξ〉f̂(ξ)dξ,

where f̂(ξ) is the characteristic function of f(I) and

f̂(ξ) =

∫
e−2π i〈ξ, I〉f(I)dI

=

∫
e−2π iz

∫
〈ξ, I〉=z

f(I)dzdI

=

∫
e−2π iz

∫
δ(z − 〈ξ, I〉)f(I)dzdI

=

∫
e−2π iz f (ξ)(z)dz,

52

where 〈·, ·〉 is the inner product, by definition f (ξ)(z) =
∫
δ(z − 〈ξ, I〉)f(I)dI is the marginal distribution

of F (ξ) ∗ I, and we define F (ξ)(s) = ξ(s) as a linear filter.

Theorem 1 transforms f(I) into a linear combination of its one-dimensional marginal distributions.
Thus, it motivates a new method for inferring f(I); namely, construct a distribution p(I) so that p(I) has the
same marginal distributions f (ξ). If p(I) matches all marginal distributions of f(I), then p(I) = f(I). But
this method will involve an uncountable number of filters, and each filter F (ξ) is as large as image I.

Our second motivation comes from psychophysical research on human texture perception, which sug-
gests that two homogeneous textures are often difficult to discriminate when they produce similar marginal
distributions for responses from a bank of filters [17]. This means that it is plausible to ignore some statisti-
cal properties of f(I) which are not important for human texture discrimination.

To make texture modeling a tractable problem, we make the following assumptions to limit the number
of filters and the window size of each filter for computational reasons, though these assumptions are not
necessary conditions for our theory to hold true. First, we limit our model to homogeneous textures; thus,
f(I) is stationary with respect to location s. Second, for a given texture, all features which concern texture
perception can be captured by “locally” supported filters. In other words, the sizes of filters should be
smaller than the size of the image. For example, the size of the image is 256 × 256 pixels, and the sizes
of filters we used are limited to less than 33 × 33 pixels. These filters can be linear or non-linear as we
discussed in Section 3.3. Third, only a finite set of filters are used to estimate f(I).

The first and second assumptions are made because we often have access to only one observed (training)
texture image. For a given observed image Iobs and a filter F (α), we let Iobs(α) denote the filtered image, and
Hobs(α)(z) the histogram of Iobs(α). According to the first assumption, f (α)

s (z) = f (α)(z) is independent of
s. By ergodicity, Hobs(α)(z) makes a consistent estimator of f (α)(z). The second assumption ensures that
the image size is larger relative to the support of filters, so that ergodicity takes effect for Hobs(α)(z) to be
an accurate estimate of f (α)(z).

Now for a specific texture, let SK = {F (α), α = 1, ...,K} be a finite set of well selected filters and
f (α)(z), α = 1, ...,K be the corresponding marginal distributions of f(I). We denote the probability distri-
bution p(I) that matches these marginal distributions as a set

ΩpK = {p(I) | Ep[δ(z − I(α)
s)] = f (α)(z) ∀z ∈ R, ∀α = 1, ...,K, ∀s ∈ D}, (3.14)

where Ep[δ(z − I
(α)
s)] is the marginal distribution of p(I) with respect to filter F (α) at location s. Thus

according to the third assumption, any p(I) ∈ ΩpK is perceptually an adequate model for the texture,
provided that we have enough well-selected filters. Then we choose from ΩpK a distribution p(I) which has
the maximum entropy:

p(I) = arg max{−
∫
p(I) log p(I)dI}, (3.15)

subject to Ep[δ(z − I(α)
s)] = f (α)(z), ∀z ∈ R, ∀α = 1, ...,K, ∀s ∈ D,

and
∫
p(I)dI = 1.

We can achieve the maximum entropy distribution by making p(I), while it satisfies constraints in some
dimensions, as random as possible in the other unconstrained dimensions. This makes it such that p(I)
is the most universal set it could be given its constraints; it does not capture, or represent, any additional
constraints that are not explicitly defined by p(I). In this case, by not representing more information than
we have available, we say the ME distribution exhibits the purest fusion of the extracted features.

53

Using Lagrange multipliers, solving the constrained optimization problem in Equation 3.15 is equal to
solving the underlying unconstrained problem:

p(I) = arg max{−
∫
p(I) log p(I)dI

−
∑
s

K∑
a=1

∫
λ(α)(z)(Ep[δ(z − I(α)

s)]− f (α)(z))dz − λ(β)(

∫
p(I)dI− 1)}

= arg max{−
∫
p(I) log p(I)dI

−
∑
s

K∑
a=1

∫
λ(α)(z)(

∫
δ(z − I(α)

s)p(I)dI− f (α)(z))dz − λ(β)(

∫
p(I)dI− 1)} (3.16)

where λ(α)(z)α = 1, 2, ..K and λ(β) are Lagrange multipliers we introduce. Note that because the con-
straints on Equation 3.15 differ from the ones given in Section 3.4.1 in that z takes continuous real values
and there is an uncountable number of constraints. Therefore, the Lagrange parameter λ takes the form as a
function of z. Also, since the constraints are the same for all locations s ∈ D, λ should be independent of s.
According the Euler-Lagrange equation, if we want to find the stationary point (maximum or minimum) for
the functional

S(f(x)) =

∫ b

a
L(x, f(x), ˙f(x))dx,

then the function f(x) should satisfy
∂L

∂f
− d

dx

∂L

∂ḟ
= 0.

Applying this to Equation 3.16, we can derive that the optimum P (I) should satisfy

− log p(I)− 1−
∑
s

K∑
α=1

∫
λ(α)(z)δ(z − Iαs)dz − λ(β) = 0

p(I) = exp{−1− λ(β) −
∑
s

K∑
α=1

∫
λ(α)(z)δ(z − Iαs)dz}. (3.17)

By reorganizing Equation 3.17, we can get the following ME distribution:

p(I; ΛK , SK) =
1

Z(ΛK)
exp{−

∑
s

K∑
α=1

∫
λ(α)(z)δ(z − Iαs)dz} (3.18)

=
1

Z(ΛK)
exp{−

∑
s

K∑
α=1

λ(α)(I(α)
s)} (3.19)

where SK = {F (1), F (2), ..., F (K)} is a set of selected filters and ΛK = (λ(1)(·), λ(2)(·), ..., λ(K)(·)) is the
Lagrange parameter. Z(ΛK) is the normalizing constant that contains the term exp{−1− λ(β)}. Note that
in Equation 3.19, for each filter F (α), λ(α)(·) takes the form as a continuous function of the filter response
I

(α)
s .

54

To proceed further, let us derive a discrete form of Equation 3.19. Assume that the filter response I
(α)
s

is discretized into L discrete gray levels, and as such z takes values from {z(α)
1 , z

(α)
2 , ..., z

(α)
L }. In general,

the width of these bins do not have to be equal, and the number of gray levels L for each filter response
may vary. As a result, the marginal distributions and histograms are approximated by piecewisely constant
functions of L bins, and we denote these piecewise functions as vectors. H(α) = (H

(α)
1 , H

(α)
2 , ...,H

(α)
L)

is the histogram of I(α), Hobs(α) denotes the histogram of Iobs(α), and the potential function λ(α)(·) is
approximated by vector λ(α) = (λ

(α)
1 , λ

(α)
2 , ..., λ

(α)
L).

So Equation 3.18 is rewritten as

p(I; ΛK , SK) =
1

Z(ΛK)
exp{−

∑
s

K∑
α=1

L∑
i=1

λ
(α)
i δ(z

(α)
i − I(α)

s)},

and by changing the order of summations:

p(I; ΛK , SK) =
1

Z(ΛK)
exp{−

K∑
α=1

L∑
i=1

λ
(α)
i H

(α)
i }

=
1

Z(ΛK)
exp{−

K∑
α=1

〈λ(α), H(α)〉}. (3.20)

The virtue of Equation 3.20 is that it provides us with a simple parametric model for the probability
distribution on I, and this model has the following properties:

• p(I; ΛK , SK) is specified by ΛK = (λ(1), λ(2), ..., λ(K)) and SK .

• Given an image I, its histograms H(1), H(2), ...,H(K) are sufficient statistics, i.e., p(I; ΛK , SK) is a
function of (H(1), H(2), ...,H(K)).

We plug Equation 3.20 into the constraints of the ME distribution and solve for λ(α), α = 1, 2, ...,K
iteratively by the following equations:

dλ(α)

dt
= Ep(I;ΛK ,SK)[H

(α)]−Hobs(α). (3.21)

In Equation 3.21, we have substituted Hobs(α) for f (α), and Ep(I;ΛK ,SK)(H
(α)) is the expected histogram

of the filtered image I(α) where I follows p(I; ΛK , SK) with the current ΛK . We converge to the unique
solution at ΛK = Λ̂K as discussed in Section 3.4.1, and Λ̂K is called the ME-estimator.

It is worth mentioning that this ME-estimator is equivalent to the maximum likelihood estimator (MLE):

Λ̂K = arg max
ΛK

log p(Iobs; ΛK , SK)

= arg max
ΛK

− logZ(ΛK)−
K∑
α=1

〈λ(α), Hobs(α)〉. (3.22)

By gradient ascent, maximizing the log-likelihood lends Equation 3.21, following property i) of the
partition function Z(ΛK). In Equation 3.21, at each step, given ΛK and hence p(I; ΛK , SK), the analytic
form of Ep(I;ΛK ,SK)(H

(α)) is not available; instead, we propose the following method to estimate it, as we
did for f (α) before. We draw a typical sample from p(I; ΛK , SK) and thus synthesize a texture image Isyn.

55

Then we use the histogram Hsyn(α) of Isyn(α) to approximate Ep(I;ΛK ,SK)(H
(α)). This requires that the

size of Isyn that we are synthesizing should be large enough.
To draw a typical sample image from p(I; ΛK , SK), we use the Gibbs sampler which simulates a Markov

chain in the image space L|D|. The Markov chain starts from any random image, e.g., a white noise image,
and it converges to a stationary process with distribution p(I; ΛK , SK). Thus, when the Gibbs sampler
converges, the images synthesized follow distribution p(I; ΛK , SK).

In summary, we propose Algorithm 3.4.2 for inferring the underlying probability model p(I; ΛK , SK)
and for synthesizing the texture according to p(I; ΛK , SK). The algorithm stops when the sub-band his-
tograms of the synthesized texture closely match the corresponding histograms of the observed images.*.

Input a texture image Iobs.
Select a group of K filters SK = {F (1), F (2), ..., F (K)}.
Compute {Hobs(α), α = 1, ...,K}.
Initialize λ(α)

i ← 0, i = 1, 2, ..., L, α = 1, 2, ...,K.
Initialize Isyn as a uniform white noise texture.†

Repeat
Calculate Hsyn(α) α = 1, 2, ...,K from Isyn, use it for Ep(I;ΛK ,SK)(H

(α)) .
Update λ(α) α = 1, 2, ...,K by Equation 3.21), so p(I; ΛK , SK) is updated.
Apply Gibbs sampler to flip Isyn for w sweeps under p(I; ΛK , SK)

Until 1
2

∑L
i | H

obs(α)
i −Hsyn(α)

i | ≤ ε for α = 1, 2, ...,K.

Algorithm 1: The learning algorithm

Given image Is, flip_counter← 0
Repeat

Randomly pick a location s under the uniform distribution.
For val = 0, ..., G− 1 with G being the number of grey levels of I

Calculate p(Is = val | I−s) by p(I; ΛK , SK).
Randomly flip Is ← val under p(val | I−s).
flip_counter← flip_counter + 1

Until flip_counter=w ×M ×N .

Algorithm 2: The Gibbs Sampler for w sweeps

In Algorithm 3.4.2, to compute p(Is = val | I−s), we set Is to val, and due to the Markov property
we only need to compute the changes of I(α) in the neighborhood of s. The size of the neighborhood is
determined by the size of filter F (α). With the updated I(α), we calculate H(α), and the probability is
normalized such that

∑G−1
val=0 p(Is = val | I−s) = 1.

*We assume the histogram of each sub-band I(α) is normalized such that
∑
iH

(α)
i = 1, therefore all the {λ(α)

i , i = 1, ..., L}
computed in this algorithm have one extra degree of freedom for each α, i.e., we can increase {λ(α)

i , i = 1, ..., L} by a constant
without changing p(I; ΛK , SK). This constant will be absorbed by the partition function Z(ΛK).

†The white noise image with uniform distribution are the samples from p(I; ΛK , SK) with λ(α)
i = 0

56

Figure 3.18: Algorithm 1: Given a texture image and K filters (after filter selection), perform convolution to
extract K histograms from the filtered response, denoting each as hobs(α). Synthesize an image (initialized as
white noise) that is same size of the input image, and perform convolution to extract another K histograms
from the filtered response, denoting each as hsyn(α). Update the coefficient of the FRAME model λ by
λαt+1 = λαt + η(hsyn(α)−hobs(α)). With this new model, we can again use the Gibbs sampler for W sweeps
to synthesize another image for the next iteration.

57

In the Gibbs sampler, flipping a pixel is a step of the Markov chain, and we define flipping |D| pixels
as a sweep, where |D| is the size of the synthesized image. Then the overall iterative process becomes an
inhomogeneous Markov chain. At the beginning of the process, p(I; ΛK , SK) is a “hot" uniform distribution.
By updating the parameters, the process gets closer and closer to the target distribution, which is much
colder. So the algorithm is very much like a simulated annealing algorithm, which is helpful for getting
around local modes of the target distribution.

In summary, the FRAME model incorporates and generalizes the attractive properties of filtering theories
and the random field models. Moreover, it interprets many previous methods for texture modeling with a
unifying perspective.

Filter Selection

After Λ is learned with the above algorithm, we can now proceed to select the next filter to be added to the
set. One way to choose SK from a filter bank B is to search for all possible combinations of K filters in B
and compute the corresponding p(I; ΛK , SK). Then by comparing the synthesized texture images following
each p(I; ΛK , SK), we can see which set of filters is the best. Such a brute force search is computationally
infeasible, and for a specific texture we often do not know whatK is. Instead, we propose a stepwise greedy
strategy. We start from S0 = ∅ (hence p(I; Λ0, S0) is a uniform distribution), and then sequentially introduce
one filter at a time. Namely, we want to find a filter that reduces KL(f ||p(I; Λ)) the most (by the minimum
entropy principle).

Suppose that at the k-th step we have chosen Sk = {F (1), F (2), ..., F (k)} and obtained a maximum
entropy distribution

p(I; Λk, Sk) =
1

Z(Λk)
exp{−

k∑
α=1

〈λ(α), H(α)〉}, (3.23)

so thatEp(I;Λk,Sk)[H
(α)] = f (α) for α = 1, 2, ..., k. Then at the (k+1)-th step, for each filter F (β) ∈ B/Sk,

we denote by d(β) = D(Ep(I;Λk,Sk)[H
(β)], f (β)) the distance between Ep(I;Λk,Sk)[H

(β)] and f (β), which
are respectively the marginal distributions of p(I; Λk, Sk) and f(I) with respect to filter F (β). Intuitively,
the bigger d(β) is, the more information F (β) carries, since it reports a big difference between p(I; Λk, Sk)
and f(I). Therefore we should choose the filter which has the maximal distance, i.e.,

F k+1 = arg max
F (β)∈B/Sk

D(Ep(I;Λk,Sk)[H
(β)], f (β)). (3.24)

To minimize entropy, we naturally choose the next filter to be the one that maximizes reduction in
KL(f ||p(I; Λ)). This indicates that we want to minimize

D(Ep(I;Λk+1,Sk+1)[H
(β)], f (β)) = KL(f ||p(I; Λk, Sk))−KL(f ||p(I; Λk+1,Sk+1

)). (3.25)

Note that the above difference is a distance measure since

KL(f ||p(I; Λk, Sk))−KL(f ||p(I; Λk+1, Sk+1))) = KL(p(I; Λk+1, Sk+1))||p(I; Λk, Sk)). (3.26)

Proposition 1. Using the distance metric above,KL(f ||p(I; Λk, Sk))−KL(f ||p(I; Λk+1, Sk+1))) is equiv-
alent to information gain: entropy(p(I; Λk, Sk))− entropy(p(I; Λk+1, Sk+1)).

Proof. To simplify notation, we denote p(I; Λk, Sk) as p and p(I; Λk+1, Sk+1)) as p+:

KL(f ||p)−KL(f ||p+) = entropy(f)− Ef [log p]− entropy(f) + Ef [log p+]

58

Figure 3.19: Synthesis of a fur texture: a is the observed texture; b,c,d,e,f are the synthesized textures using
K = 0, 1, 2, 4, 7 filters, respectively.

= Ef [log p+]− Ef [log p]

We refer to Theorem 1 of Section 9.1.1 that is introduced in and it becomes clear that Ef [log p] = −entropy(p)
and Ef [log p+] = −entropy(p+). Then Ef [log p+] − Ef [log p] = entropy(p) − entropy(p+), which is
the definition of information gain. Although we get the expression of information gain, it is not directly
computable. We need to approximate it with the help of Taylor expansion.

Proposition 2. Simplifying the distance measure as D(h), where h is the evaluated histogram feature using
the newly added filter, Lp-norm is a reasonable approximation to D(h).

Proof. Denote p as the distribution modeled prior to adding the new filter, then let h0 be the feature evaluated
using the new filter on samples from p and hobs be the feature evaluated using the new filter on samples from
true distribution f . Using Taylor expansion,

D(hobs) ≈ D(h)
∣∣∣
h=h0

+
∂D

∂h

∣∣∣
h=h0

(hobs − h0) +
1

2

∂2D

∂h2

∣∣∣
h=h0

(hobs − h0)2

where ∂D
∂h = −λk+1 and ∂2D

∂h2 is the covariance matrix Σhobs of each component of hobs evaluated using the
new filter (for a detailed explanation, please refer to Chapter 9). As λk+1 is typically initialized to 0, we also
have D(h)

∣∣∣
h=h0

= 0 and ∂D
∂h

∣∣∣
h=h0

(hobs − h0) = 0.

Furthermore, since we assume each component is independent from each other, we can approximate
the second order term by L2 distance. In general, Lp distance metric is a good enough approximation to
D(h).

As Lp-norm is directly computable and an approximation to information gain, we typically choose it to
measure the distance d(β), which is also an approximation of the reduction in bits, i.e.,

F k+1 = arg max
F (β)∈B/Sk

1

2
|f (β) − Ep(I;Λk,Sk)[H

(β)]|p. (3.27)

59

For the following, we choose p = 1. To estimate f (β) and Ep(I;Λk,Sk)[H
(β)], we applied F (β) to

the observed image Iobs and the synthesized image Isyn sampled from the p(I; Λk, Sk) and substitute the
histograms of the filtered images for f (β) and Ep(I;Λk,Sk)[H

(β)], i.e.,

F k+1 = arg max
F (β)∈B/Sk

1

2
|Hobs(β) −Hsyn(β)|. (3.28)

The filter selection procedure stops when the d(β) for all filters F (β) in the filter bank are smaller than a
constant ε. Due to fluctuation, various patches of the same observed texture image often have a certain
amount of histogram variance, and we use such a variance for ε.

Finally, we propose Algorithm 3.4.2 for filter selection.

Let B be a bank of filters, S the set of selected filters, Iobs the observed texture image,
and Isyn the synthesized texture image.

Initialize k = 0, S ← ∅, p(I)← uniform dist. Isyn ← uniform noise.
For α = 1, ..., |B| do

Compute Iobs(α) by applying F (α) to Iobs.
Compute histogram Hobs(α) of Iobs(α) .

Repeat
For each F (β) ∈ B/S do

Compute Isyn(β) by applying F (β) to Isyn

Compute histogram Hsyn(β) of Isyn(β)

d(β) = 1
2 | Hobs(β) −Hsyn(β) |,‡

Choose F k+1 so that d(k + 1) = max{d(β) : ∀F (β) ∈ B/S}
S ← S ∪ {F k+1}, k ← k + 1.
Starting from p(I) and Isyn, run algorithm 1 to compute new p∗(I) and Isyn∗.
p(I)← p∗(I) and Isyn ← Isyn∗.

Until d(β) < ε.

Algorithm 3: Filter Selection

Fig. 3.19.a is the observed image of animal fur. We start from the uniform noise image in Fig. 3.19.b.
The first filter picked by the algorithm is a Laplacian of Gaussian filter LG(1.0) and its window size is

5 × 5. It has the largest error d(β) = 0.611 among all the filters in the filters bank. Then we synthesize
texture as shown in Fig. 3.19.c, which has almost the same histogram at the sub-band of this filter (the error
d(β) drops to 0.035).

To provide a final insight into the pursuit process from a distribution point of view, we refer to Fig. 3.20.
Note that this is only a 2D view of the very-high dimensional distribution space. First, selecting a filter gives
a (high-dimensional) constrained set of probability distributions satisfying a given feature statistic. Then
we try to look for a distribution in this constrained set that is the closest to the random uniform distribution
(by Maximum Entropy Principle), as represented by the right angle. In fact, we are minimizing KL(p, p0)
where p ∈ Ωp1 and p0 is the starting distribution. This objective is equivalent to maximizing entropy if
and only if p0 is random uniform. We leave this proof as an exercise for the reader. Second, we find the

‡Since both histograms are normalized to have sum = 1, then error ∈ [0, 1]. We note this measure is robust with respect to
the choice of the bin number L (e.q. we can take L = 16, 32, 64), as well as the normalization of the filters.

60

Figure 3.20: A graphical view of the FRAME learning algorithm in distribution space.

Figure 3.21: Note the selected filter after each filter selection. Each time, we add the filter that reduces
KL(f, p(I; Λ)) the most.

new filter that gives the largest reduction in KL(f, p) (by Minimum Entropy Principle), constraining the
equivalence class of distributions further to a lower-dimensional set. It is important to note that Ωp2 has
lower dimension than Ωp1 and every set after Ωp2 has lower dimension due to additional constraints. The
true distribution f again also remains in each set, as it satisfies each additional feature statistic. In each new
constrained set, we start again from the random uniform distribution and find a new closest distribution. The
algorithm continues and we see from the solid line that our projected distribution "spirals" into the true data
distribution as more constraints are put onto the distribution. Further details on information projection are
presented in Chapter 9.

Fig. 3.21 is the filter we selected and added into the filter set, which we use it the model. As we can
see in the figure, most of the filters we selected are Gabor filters and we also need some other filters to help
detect the edges and corners.

Fig. 3.22 shows the curve of the weighted error per bin over the number of filters used for synthesis. As
it is shown in the plot, after about 10 iterations, the weighted error is stable enough and can generate very
reasonable figures, which on the other hand perfectly match the result that given in Fig. 3.19.

61

Figure 3.22: The weighted error over the number of filters used,

3.5 The Texture Ensemble

The following section presents theoretical work on texture theories and establishes connections between
FRAME, Statistical Physics, and the Julesz Ensemble. This section is highly technical and it is encouraged
for interested readers to go through the original works [256] [255].

3.5.1 Ensembles in Statistical Physics

We have developed the FRAME model based on the maximum entropy principle and in the following we
will show that there is a simpler and more profound way to derive or justify the FRAME model. This insight
again originates from Statistical Physics, specifically the equivalence of ensembles.

Statistical physics is the subject of studying macroscopic properties of a system involving a massive
amount of elements (see Chandler, 1987 [25]). Fig. 5.5 illustrates three types of physical systems which are
interesting to us.

Figure 3.23: Three types of ensembles in statistical physics.

1. Micro-canonical ensembles. Fig. 5.5.a is an insulated system of N elements. The elements could
be atoms, molecules, electrons in systems such as gas, ferro-magnetic material, fluid etc. N is big, say
N = 1023 and is considered infinity. The system is decided by a configuration or state s = (xN ,mN),
where xN describes the coordinates of the N elements and mN their momenta (Chandler, 1987). It is
impractical to study the exact motions of 6N vector s, and in fact, these microscopic states are less relevant,
and people are more interested in the macroscopic properties of the system as a whole, say the number of
elements N , the total energy E(s), and total volume V . Other derivative properties are temperature and

62

pressure etc.
If we denote by h(s) = (N,E, V) the macroscopic properties, at thermodynamic equilibrium all mi-

croscopic states that satisfy this property make up a micro-canonical ensemble:

Ωmce(ho) = {s = (xN ,mN) : h(s) = ho = (N,V,E)}.

s is an instance and h(s) is summary of the system state for practical purposes. Obviously Ωmce is a
deterministic set or an equivalence class for all states that satisfy descriptive constraints h(s) = ho.

An essential assumption in statistical physics is, as a first principle,

“all microscopic states are equally likely at thermodynamic equilibrium.”

This is simply a maximum entropy assumption. Let Ω 3 s be the space of all possible states, then Ωmce ⊂ Ω
is associated with a uniform probability,

punif(s; ho) =

{
1/|Ωmce(ho)| for s ∈ Ωmce(ho),
0 for s ∈ Ω/Ωmce(ho).

2. Canonical ensembles. The canonical ensemble refers to a small system (with fixed volume V1 and
elements N1) embedded in a micro-canonical ensemble (see Fig. 5.5.b). The canonical ensemble can
exchange energy with the rest of the system (called heat bath or reservoir). The system is relatively small,
e.g N1 = 1010, so that the bath can be considered a micro-canonical ensemble itself.

At thermodynamic equilibrium, the microscopic state s1 for the small system follows a Gibbs distribu-
tion,

pGib(s1;β) =
1

Z
exp{−βE(s1)}.

The conclusion was stated as a general theorem by Gibbs (1902),

“If a system of a great number of degrees of freedom is micro-canonically distributed in phase,
any very small part of it may be regarded as canonically distributed.”

In accordance with this theorem, the Gibbs model pGib is a conditional probability of the uniform model
punif . This conclusion is extremely important because it bridges a deterministic set Ωmce with a descriptive
model pGib. We consider this is an origin of probability in modeling visual patterns.
3. Grand-Canonical ensembles. When the small system with fixed volume V1 can also exchange elements
with the bath as in liquid and gas materials, then it is called a grand-canonical ensemble (see Fig. 5.5.c).
The grand-canonical ensemble follows a distribution,

pgce(s1;βo, β) =
1

Z
exp{−βoN1 − βE(s1)},

where an extra parameter βo controls the number of elements N1 in the ensemble. If we replace the energy
of the physical system by the feature statistics of the texture image, then we will arrive at a mathematical
model for textures.

63

Figure 3.24: For each pair of texture images, the image on the left is the observed image, and the image on
the right is the image randomly sampled from the Julesz texture ensemble.

Figure 3.25: Julesz ensembles of different textures are disjoint in the space of infinite images. They will
overlap in the space of image patches of finite size.

3.5.2 Texture Ensemble

To study real world textures, one needs to characterize the dependency between pixels by extracting spatial
features and calculating some statistics averaged over the image. One main theme of texture research is to
seek the essential ingredients in terms of features and statistics h(I), which are the bases for human texture
perception. From now on, we use the bold font h to denote statistics of image features.

In the literature, the search for h has converged to marginal histograms of Gabor filter responses. We
believe that some bins of joint statistics may also be important as long as they can be reliably estimated from
finite observations.

Given K Gabor filters as feature detectors {F (1), ..., F (K)}, we convolve the filters with image I to
obtain the sub-band filtered images {I(1), ..., I(K)}, where I(k) = F (k) ∗ I. Let h(k) be the normalized
intensity histogram of I(k); then the feature statistics h collects the normalized histograms of these K sub-
band images,

h(I) = (h(1)(I), ..., h(K)(I)).

We use H(I) = (H(1)(I), ...,H(K)(I)) to denote the unnormalized histograms. We assume that boundary
conditions are properly handled (e.g., periodic boundary condition). It should be noted that the conclusions
of this paper hold as long as h(I) can be expressed as spatial averages of local image features. The marginal

64

histograms of Gabor filter responses are only special cases.
Given statistics h(I), one can partition the image space ΩD into equivalence classes ΩD(h) = {I :

h(I) = h}, as we did for the iid case. For finite D, the exact constraint h(I) = h may not be satisfied, so
we relax this constraint, and replace ΩD(h) by

ΩD(H) = {I : h(I) ∈ H}

with H being a small set around h. Then we can define the uniform counting measure or the uniform
probability distribution on ΩD(H) as

q(I;H) =

{
1/|ΩD(H)|, if I ∈ ΩD(H),
0, otherwise,

(3.29)

where |ΩD(H)| is the volume of or the number of images in ΩD(H). Now we can define the Julesz ensemble
as follows.

Definition. Given a set of feature statistics h(I) = (h(1)(I), ..., h(K)(I)), a Julesz ensemble of type h is a
limit of q(I;H) as D → Z2 andH → h with some boundary condition.§

As in the simple iid example, the Julesz ensemble is defined mathematically as the limit of a uniform
counting measure. It is always helpful to imagine the Julesz ensemble of type h as the image set ΩD(h)
on a large D. Also, in the later calculation, we shall often ignore the minor complication that constraint
h(I) = h may not be exactly satisfied.

Then, we are ready to give a mathematical definition for textures.

Definition. A texture pattern is a Julesz ensemble defined by a type h of the feature statistics h(I).

3.5.3 Type Theory and Entropy Rate Functions

A Simple Independent Model

In this section, we introduce basic concepts, such as type, ensemble, entropy function, typical images, and
equivalence of ensembles, using a simple image model where the pixel intensities are independently and
identically distributed (iid).

Let I be an image defined on a finite lattice D ⊂ Z2, and the intensity at pixel v ∈ D is denoted by
I(v) ∈ G = {1, 2, ..., g}. Thus ΩD = G|D| is the space of images on D, with |D| being the number of pixels
in D.

1) The FRAME model for iid images. We consider a simple image model where pixel intensities are
independently and identically distributed according to a probability p = (p1, ..., pg) where

∑
i pi = 1. The

distribution of I can be written as a FRAME model

p(I;β) =
∏
v∈D

pI(v) =

g∏
i=1

p
Hi(I)
i = exp{〈log p,H(I)〉} = exp{〈β,H(I)〉}, (3.30)

where H(I) = (H1(I), ...,Hg(I)) is the unnormalized intensity histogram of I, i.e., Hi is the number of
pixels whose intensities equal to i. β = (log p1, ..., log pg) is the parameter of p(I;β) – a special case of the
FRAME model.

2) Type. Let h(I) = H(I)/|D| be the normalized intensity histogram. We call h(I) the type of image I.

§We assume D → Z2 in the sense of van Hove, i.e., the ratio between the boundary and the size of D goes to 0.

65

3) Equivalent class. Let ΩD(h) be the set of images with h(I) = h ¶, i.e., ΩD(h) = {I : h(I) = h}.
Then the image space is partitioned into equivalence classes

ΩD = ∪hΩD(h).

As shown in Fig. 3.26, each equivalence class ΩD(h) is mapped into one type h on a simplex – a plane
defined by h1 + · · ·+ hg = 1 and hi ≥ 0, ∀i in an g-dimensional space.

Figure 3.26: The partition of the image space into equivalence classes, and each class corresponds to an h
on the probability simplex.

4) The Julesz ensemble for iid images. The hard constraint in defining the equivalence class ΩD(h)
makes sense only in the limit as D → Z2, where statistical fluctuations vanish. Therefore, we may attempt
to define the Julesz ensemble as the limit of ΩD(h) as D → Z2, or even more directly, as the set of images
I defined on Z2 with h(I) = h.

Unfortunately, the above "definitions" are not mathematically well-defined. Instead, we need to define
the Julesz ensemble in a slightly indirect way. First, we associate with each equivalence class ΩD(h) a prob-
ability distribution q(I;h), which is uniform over ΩD(h) and vanishes outside. Then, the Julesz ensemble
of type h is defined to be the limit of q(I;h) as D → Z2.

For finite D, the equivalence class ΩD(h) may be empty because |D|h may not be integers. Thus, to be
more rigorous, we should replace h by a small setH around h, and letH go to h as D →∞. For simplicity,
however, we shall neglect this minor complication and simply treat |D|h as integers.

The uniform distribution q(I;h) only serves as a counting measure of the equivalence class ΩD(h),
i.e., all the images in ΩD(h) are counted equally. Therefore, any probability statement under the uniform
distribution q(I;h) is equivalent to a frequency statement of images in ΩD(h). For example, the probability
that image I has a certain property under q(I;h) is actually the frequency or the proportion of images in
ΩD(h) that have this property. The limit of q(I;h) thus essentially defines a counting measure of the set of
infinitely large images (defined on Z2) with histogram h. With a little abuse of language, we sometimes also
call the equivalence class ΩD(h) defined on a large lattice D a Julesz ensemble, and it is always helpful to
imagine a Julesz ensemble as such an equivalence class if the reader finds the limit of probability measures
too abstract.

5) Entropy function. We are interested in computing the volume of the Julesz ensemble ΩD(h), i.e., the
number of images in ΩD(h). We denote this volume by |ΩD(h)|. Clearly

|ΩD(h)| = |D|!∏g
i=1(hi|D|)!

.

Using the Stirling formula, it can be easily shown that
¶We hope that the notation h(I) = h will not confuse the reader. The h on the left is a function of I for extracting statistics,

while the h on the right is a specific value of the statistics.

66

lim
D→Z2

1

|D| log |ΩD(h)| = lim
D→Z2

1

|D| log
|D|!∏g

i=1(hi|D|)!

= −
g∑
i=1

hi log hi = entropy(h).

Thus for large enough lattice, the volume of ΩD(h) is said to be in the order of entropy(h), i.e.,

|ΩD(h)| ∼ exp|D|entropy(h) .

For notational simplicity, we denote the entropy function by s(h) = entropy(h).

6) The probability rate function. Now we are ready to compute the total probability mass that p(I;β)
assigns to an equivalence class ΩD(h). We denote this probability by p(ΩD(h);β). Because images in
ΩD(h) all receive equal probabilities, it can be shown that

lim
D→Z2

1

|D| log p(ΩD(h);β) = lim
D→Z2

1

|D| log{|ΩD(h)|
g∏
i=1

p
|D|hi
i }

= −
g∑
i=1

hi log
hi
pi

= −KL(h||p),

where KL(h||p) denotes the Kullback-Leibler distance from h to p. KL(h||p) ≥ 0 for all h and p, with
equality holding when h = p.

Thus, on a large enough lattice, the total probability mass of an equivalence class ΩD(h) is said to be on
the order of −KL(h||p),

p(ΩD(h);β) ∼ exp−|D|KL(h||p) (3.31)

−KL(h||p) is the probability rate function, and is denoted by sβ(h) = −KL(h||p).

7) Typical vs. most likely images. Suppose among p1, ..., pg, pm is the largest probability. Consider one
extreme type h, with hm = 1, and hi = 0,∀i 6= m. Then the image in this ΩD(h) is the most likely image
under model p(I;β), i.e., it receives the highest probability. However, ΩD(h) has only one constant image,
and the probability that p(I;β) assigns to this ΩD(h) is essentially zero for large lattice. Now consider
the equivalence class ΩD(h = p). Each image in ΩD(h = p) receives less probability than the most
likely image, but overall, the total probability received by the whole ΩD(h = p) is essentially 1 for large
lattice. That is, if we sample from the FRAME model p(I;β), we will almost always get an image I from
ΩD(h = p). Such images are called the typical images of the FRAME model.

Having introduced the basic concepts, we now explain the basic ideas of ensemble equivalence in the
next two subsections by going both directions from one to the other.

From a FRAME model to a Julesz ensemble on Infinite Lattice

We study the limit of the FRAME model p(I;β) as D → Z2. A simple fact will be repeatedly used in this
section. To see this fact, let’s consider the following example. Suppose we have two terms, one is e5n, and
the other is e3n. Consider their sum e5n + e3n. As n→∞, the sum e5n + e3n is dominated by e5n, and the
order of this sum is still 5, i.e., limn→∞

1
n log(e5n + e3n) = 5. This means that for the sum of many terms,

the term with the largest exponential order dominates the sum, and the order of the sum is the largest order
among the individual terms.

67

SupposeH is a set of types and
ΩD(H) = {I;h(I) ∈ H}

is the set of all images I whose type is withinH. Then from Equation 3.31, we have

p(I ∈ ΩD(H);β) =

∫
H
p(ΩD(h);β)dh

∼
∫
H

exp−|D|KL(h||p) dh ∼ exp−|D|KL(h∗||p) .

where h∗ is the type inH which has minimum Kullback-Leibler divergence to p,

h∗ = arg min
h∈H

KL(h||p).

That is, the total probability for ΩD(H) has an exponential order KL(h∗||p) and is dominated by the
heaviest type h∗. In a special case ΩD(H) = ΩD, i.e., the whole image space, we have h∗ = p and
KL(h∗||p) = 0.

Clearly, as |D| → ∞, the FRAME model quickly concentrates its probability mass on ΩD(h = p), and
assigns equal probabilities to images in ΩD(h = p). For other h 6= p, the probabilities will decrease to 0 at
an exponential rate. Thus, the FRAME model becomes a Julesz ensemble.

From a Julesz Ensemble to a FRAME model on Finite Lattice

In this section, we tighten up the notation a little bit. We use ID to denote the image defined on latticeD, and
we use ID0 to denote the image patch defined on D0 ⊂ D. For a fixed type h of feature statistics, consider
the uniform distribution q(I;h) on ΩD(h). Under q(I;h), the distribution of ID0 , denoted by q(ID0 ;h), is
well defined.|| We shall show that if we fix D0 and let D → Z2, then q(ID0 ;h) goes to the FRAME model
(see Equation 3.30) with p = h.

First, the number of images in ΩD(h) is

|ΩD(h)| = |D|!∏m
i=1(hi|D|)!

.

Then, let’s fix ID0 and calculate the number of images in ΩD(h) whose image value (i.e., intensities) on
D0 is ID0 . Clearly, for every such image, its image value on the rest of the lattice D/D0, i.e., ID/D0

must
satisfy

H(ID/D0
) = h|D| −H(ID0),

where H(ID0) = |D0|h(ID0) is the unnormalized histogram of ID0 . Therefore

ID/D0
∈ ΩD/D0

(
h|D| −H(ID0)

|D/D0|
).

So the number of such images is |ΩD/D0
((h|D| −H(ID0))/|D/D0|)|. Thus,

q(ID0 ;h) =
|ΩD/D0

(
h|D|−H(ID0

)

|D/D0|)|
|ΩD(h)|

||In the iid case, q(ID0 ;h) is both the marginal distribution and the conditional distribution of q(I;h), while in random fields,
we only consider the conditional distribution.

68

=
(|D| − |D0|)!/

∏g
i=1(hi|D| −Hi(ID0))!

|D|!/∏g
i=1(hi|D|)!

=

∏g
i=1(hi|D|)(hi|D| − 1)...(hi|D| −Hi(ID0) + 1)

|D|(|D| − 1)...(|D| − |D0|+ 1)

=

∏g
i=1 hi(hi − 1/|D|)...(hi − (Hi(ID0)− 1)/|D|)

(1− 1/|D|)...(1− (|D0| − 1)/|D|)

→
g∏
i=1

h
Hi(ID0

)

i as |D| → ∞.

Therefore, the distribution of ID0 is the FRAME model (see Equation 3.30) with p = h under the Julesz
ensemble defined by h.

The above calculation can be easily interpreted in a non-probabilistic way. That is, q(ID0 ;h) is the
frequency or the proportion of images in ΩD(h) (on large D) whose patches on D0 are ID0 . In other words,
if we look at all the images in the Julesz ensemble through D0, then we will find a collection of images on
D0, and the distribution of this collection is described by the FRAME model. The reason that the FRAME
model assigns probabilities to all images on D0 is also quite clear. Under the hard constraint on h(ID),
h(ID0) can still take any possible values.

3.5.4 Equivalence of FRAME and Julesz Ensemble

In this section, we show the equivalence between the Julesz ensembles and the FRAME models, using the
fundamental principle of equivalence of ensembles in statistical mechanics.

From the Julesz Ensemble to the FRAME Model

In this subsection, we derive the local Markov property of the Julesz ensemble, which is globally defined by
type h. This derivation is adapted from a traditional argument in statistical physics (e.g., Laudu, 1959). It is
not as rigorous as modern treatments, but it is much more revealing.

Suppose the feature statistics are h(I) where I is defined on D. For a fixed value of feature statistics h,
consider the image set ΩD(h) = {I : h(I) = h}, and the associated uniform distribution q(I; h). First, we
fix D1 ⊂ D, and then fix D0 ⊂ D1. We are interested in the conditional distribution of the local patch ID0

given its local environment ID1/D0
under the model q(I; h) as D → Z2. We assume that D0 is sufficiently

smaller than D1 so that the neighborhood of D0, ∂D0, is contained in D1.
Let H0 = H(ID0 |I∂D0) be the unnormalized statistics computed for ID0 where filtering takes place

within D0 ∪ ∂D0. Let H01 be the statistics computed by filtering inside the fixed environment D1/D0. Let
D−1 = D/D1 be the big patch outside of D1. Then the statistics computed for D−1 is h|D| −H0 −H01.
Let h− = (h|D| −H01)/|D−1|, then the normalized statistics for D−1 is h− −H0/|D−1|.

For a certain ID0 , the number of images in ΩD(h) with such a patch ID0 and its local environment
ID1/D0

is |ΩD−1(h− −H0/|D−1|)|. Therefore the conditional probability, as a function of ID0 , is

q(ID0 | ID1/D0
,h) ∝ |ΩD−1(h− −

H0

|D−1|
)|.

Unlike the simple iid case, however, the above volume cannot be computed analytically. However, the
volume |ΩD(h)| still shares the same asymptotic behavior as that of the simple iid example, namely,

lim
D→Z2

1

|D| log |ΩD(h)| → s(h),

69

where s(h) is a concave entropy function of h.
Like the simple iid case, in the above derivation, we ignore the minor technical complication that ΩD(h)

may be empty because the exact constraint may not be satisfied on finite lattice. A more careful treatment is
to replace h by a small setH around h, and letH → h as D → Z2. Let ΩD(H) = {I : h(I)inH}, then we
have the following

Proposition 3. The limit

lim
D→Z2

1

|D| log ΩD(H) = s(H)

exists. Let s(h) = limH→H̄ s(H), then s(h) is concave, and s(H) = supH̄∈H s(H̄).

See Lanford (1973) for a detailed analysis of the above result. The s(h) is a measure of the volume of
the Julesz ensemble of type h. It defines the randomness of the texture appearance of type h.

With such an estimate, we are ready to compute the conditional probability. Note that the conditional
distribution, q(ID0 | ID1/D0

,h), as a function of ID0 , is decided only by H0, which is the sufficient statistics.
Therefore, we only need to trace H0 while leaving other terms as constants. For largeD, a Taylor expansion
at h− gives

log q(ID0 | ID1/D0
,h) = constant + log |ΩD−1(h− −

H0

|D−1|
)|

= constant + |D−1|s(h− −
H0

|D−1|
)

= constant− 〈s′(h−),H0〉+ o(
1

|D|).

Assuming the entropy function s has continuous derivative at h, and let β = s′(h), then, as D → Z2,
h− → h, and s′(h−)→ β. Therefore,

log q(ID0 | ID1/D0
,h) → const− 〈s′(h),H0〉

= const− 〈β,H0〉,

so
q(ID0 | ID1/D0

,h)→ 1

ZD0(β)
exp{−〈β,H(ID0 | I∂D0)〉},

which is exactly the Markov property specified by the FRAME model. This derivation shows that local
computation using the FRAME model is justified under the Julesz ensemble. It also reveals an important
relationship, i.e., the parameter β can be identified as the derivative of the entropy function s(h), β = s′(h).

As in the simple iid case, this result can be interpreted in a non-probabilistic way in terms of frequencies.

From the FRAME Model to the Julesz Ensemble

In this subsection, we study the statistical properties of the FRAME models as D → Z2.
Consider the FRAME model

p(I;β) =
1

Z(β)
exp{−|D|〈β,h(I)〉},

which assigns equal probabilities to the |ΩD(h)| images in ΩD(h). The probability that p(I;β) assigns to
ΩD(h) is

p(ΩD(h);β) =
1

ZD(β)
exp{−|D|〈β,h〉}|ΩD(h)|.

70

The asymptotic behavior of this probability is

sβ(h) = lim
D→Z2

1

|D| log p(ΩD(h);β)

= −〈β,h〉+ s(h)− lim
D→Z2

1

|D| logZD(β).

For the last term, we have

Proposition 4. The limit

ρ(β) = lim
D→Z2

1

|D| logZD(β)

exists and is independent of the boundary condition. ρ(β) is convex.

See Griffiths and Ruelle (1971) for a proof. Therefore, we have

Proposition 5. The probability rate function sβ(h) of the FRAME model p(I;β) is

sβ(h) = lim
D→Z2

1

|D| log p(ΩD(h);β) = s(h) − 〈β,h〉 − ρ(β).

Therefore, the probability that the FRAME model puts on ΩD(h) behaves like exp{|D|sβ(h)}, and
clearly sβ(h) ≤ 0 for any h and any β (otherwise, the probability will go unbounded). This sβ(h) can be
identified with −KL(h||p) in the simple iid case.

The probability rate function sβ(h) tells us that p(I;β) will eventually concentrate on the h∗ that maxi-
mizes sβ(h) = s(h) − 〈β,h〉 − ρ(β), or s(h) − 〈β,h〉. So we have the following

Theorem 2. If there is a unique h∗ where sβ(h) achieves its maximum 0, then p(I;β) eventually concen-
trates on h∗ as D → Z2. Therefore the FRAME model p(I;β) goes to a Julesz ensemble defined by h∗. If
s(h) is differentiable at h∗, then s′(h∗) = β.

The uniqueness of h∗ holds under the condition that there is no phase transition at β.

3.6 Deriving Partial Differential Equations from the MRF and FRAME
models

In the previous sections, we have motivated feature extraction using filters and matching marginal distri-
butions of observed data. This design of features has led to FRAME, a unified view of both clique-based
and filter-based methods in texture modeling. Using Gibbs distribution as the probability distribution for
textures, we further learn its potential function with dynamics

dλ(α)

dt
= Ep(I;ΛK ,SK)[H

(α)]−Hobs(α).

as in Equation 3.21.
Computing Ep(I;ΛK ,SK)[H

(α)] is difficult and it involves sampling synthetic images using the current
model distribution. A class of methods for image synthesis involves non-linear Partial Differential Equations
(PDEs) in the form of

dI

dt
= T (I)

71

where T is a function of current I. And in this section, we connect Gibbs distribution to PDE paradigms
for texture formation and derive a common framework under which many previous PDE methods can be
similarly derived.

We first introduce historical methods adopting PDEs for image processing inspired by physics and chem-
istry, then we introduce our discovery of reaction-diffusion functions as Gibbs potential functions, leading
to Gibbs Reaction and Diffusion Equation (GRADE) as a family of PDEs for texture patterns formation.

3.6.1 Turing Diffusion-Reaction

A set of non-linear PDEs was first studied in [239] for modeling the formation of animal coat patterns
by the diffusion and reaction of chemicals, which Turing called the “morphogens.” These equations were
further explored by Murray in theoretical biology [179]. For example, let A(x, y, t) and B(x, y, t) be the
concentrations of two morphogens at location (x, y) and time t , the typical reaction-diffusion equations are{

∂A
∂t = Da∆A+Ra(A,B)
∂B
∂t = Db∆B +Rb(A,B)

(3.32)

where Da, Db are constraints, ∆ = ∂2

∂x2 + ∂2

∂y2 is the Laplace operator, and Ra(A,B), Rb(A,B) are non-
linear functions for the reaction of chemicals, e.g.,Ra(A,B) = A∗B−A−12 andRb(A,B) = 16−A∗B.

The morphogen theory provides a way for synthesizing some texture patterns. In the texture synthesis
experiments, chemical concentrations are replaced by various colors, and the equations run for a finite steps
with free boundary condition starting with some initial patterns. In some cases, both the initial patterns and
the running processes have to be controlled manually in order to generate realistic textures. Two canonical
textures synthesized by the Turing reaction-diffusion equation are the leopard blobs and zebra stripes.

In the reaction-diffusion equation above, the reaction terms are responsible for pattern formation, how-
ever they also make the equations unstable or unbounded. Even for a small system, the existence and
stability problems for these PDEs are intractable (Grindrod 1996) [88]. In fact, we believe that running any
non-linear PDEs for a finite steps will render some patterns, but it is unknown how to design a set of PDEs
for a given texture pattern.

3.6.2 Heat Diffusion

As introduced in Section 3.2.3, generating image according to the heat diffusion equation

dI

dt
= ∆I(x, y)

is equivalent to minimizing potential energy of GMRF and

dI

dt
= −δU(I(x, y, t))

δI

where U(I(x, y)) = β
∫
x

∫
y(∇xI(x, y))2 + (∇yI(x, y))2dy dx.

In the following we show that Anisotropic diffusion can also be written in a similar form of minimizing
a potential energy.

72

3.6.3 Anisotropic Diffusion

Perona and Malik introduced a family of anisotropic diffusion equations for generating image scale space
I(x, y, t) [193]. Similar to heat diffusion equation, their equation also simulate the “heat” diffusion process,

dI

dt
= div(c(x, y, t)∇I), I(x, y, 0) = I0 (3.33)

where ∇I = (∂I∂x ,
∂I
∂y) is the intensity gradient and div is the divergence operator, div(~V) = ∇xP +∇yQ,

for any vector ~V = (P,Q). In practice, the heat conductivity c(x, y, t) is defined as function of location
gradients. For example, Perona and Malik chose

dI

dt
= ∇x(

1

1 + (∇xI/b)2
∇xI) +∇y(

1

1 + (∇yI/b)2
∇yI) (3.34)

where b is a scaling constant. It is easy to see that Equation 3.34 minimizes the following energy function
by gradient descent, just as in heat diffusion process in the section above,

U(I) =

∫ ∫
λ(∇xI) + λ(∇yI)dxdy (3.35)

where λ(ξ) = const.log(1 + (ξ/b)2) and λ′(ξ) = const. ξ
1+(ξ/b)2 are plotted in Fig. 3.27.

Figure 3.27: On the left is λ(ξ) = const. log (1 + (ξ/b)2) and on the right is λ′(ξ) = const. ξ
1+(ξ/b)2

Although the anisotropic diffusion equations can be adopted for removing noise and enhancing edges
[185], I(z, y, t) converges to a flat image as t → ∞ in the Perona-Malik equation.

3.6.4 GRADE: Gibbs Reaction And Diffusion Equations

The above sections introduced (very similar) prior PDE paradigms in synthesizing textures. However, the
methods mentioned above directly follow PDE models used in chemistry and physics. Directly following
Gibbs distribution as used in FRAME, we derive a family of PDEs called Gibbs Reaction and Diffusion
Equation (GRADE). We also believe that many PDE paradigms for image processing can be unified under
this common framework by using the same approach.

Suppose image I is defined on an N × N lattice D. Consider the Gibbs distribution as derived in
FRAME,

p(I;λ, S) =
1

Z
exp {−U(I; Λ, S)} ,

whereZ is the normalization constant independent of I, S = {F1, F2, ..., Fn} is a set of filters to characterize
the essential features of the images, and Λ = {λ1(·), ..., λn(·)} is a set of potential functions on feature

73

(a) (b)

Figure 3.28: This figure shows two classes of functions. (a) shows diffusion functions. b) shows reaction
functions. Dotted lines show the fitted φ and ψ functions, respectively.

statistics extracted by S (using convolution). The potential is

U(I; Λ, S) =
n∑
i=1

∑
(x,y)∈D

λi(Fi ∗ I(x, y)) (3.36)

where Fi ∗ I(x, y) is the filter response of Fi at (x, y).
In practice, S is chosen by minimizing the entropy of p(I) from a bank of filters such as the Gabor filters

at various scales and orientations [3][21] and wavelet transforms [12][20]. In general, these filters can be
non-linear functions of the image intensities. In the rest of this paper, we shall only study the following
linear filters:

1. An intensity filter δ(·), and gradient filters∇x, ∇y.
2. The Laplacian of Gaussian filters,

LoG(x, y, s) = const.(x2 + y2 − s2)e−
x2+y2

s2 , (3.37)

where s =
√

2σ stands for the scale of the filter. We denote these filters by LoG(s). A special filter is
LoG(

√
2

2), which has a 3× 3 window [0, 1
4 , 0; 1

4 ,−1, 1
4 ; 0, 1

4 , 0].
3. Gabor filters with both sine and cosine components:

G(x, y, s, θ) = const. · Rot(θ) · e
1

2s2
(4x2+y2)e−i

2π
s
x. (3.38)

It is a sine wave at frequency 2π
s modulated by an elongated Gaussian Function, and rotated at angle θ.

We denote the real and imaginary parts of G(z, y, s, θ) by G cos(s, θ) and G sin(s, θ).
Using the filters above to learn the potential function in Equation 3.36 in discretized bins using FRAME,

we found that texture patterns generally exhibit two families of functions similar to reaction-diffusion in
chemical processes as shown in Fig. 3.28. We use the following two families of functions to fit our dis-
cretized findings, and the fitted curves are shown as dashed lines in Fig. 3.28.

φ(ξ) = a(1− 1

1 + (|ξ − ξ0|/b)γ
), a > 0 (3.39)

ψ(ξ) = a(1− 1

1 + (|ξ − ξ0|/b)γ
), a < 0 (3.40)

where ξ0, b are the translation and scaling constants, respectively, and ‖a‖ weights the contribution of the
filter. φ(ξ), the diffusion function, assigns lowest energy (or highest probability) to filter responses around

74

(a) (b)

Figure 3.29: Note the forming of the two types of potential functions. Suppose our current histogram
of synthesized image is more dispersed than the observed histogram (shown in the left image). Then the
updating of λ will push the λ on the tail to be bigger and push the λ in the center to be smaller, which forms
a diffusion function. In the following sampling process, this diffusion function will push the corresponding
feature to zero, making the synthesized histogram more concentrated to center and thus be closer to the
observed one.

(a) (b)

Figure 3.30: We can use the ReLU function to replace the original non-linear diffusion and reaction func-
tions.

ξ0 (and ξ0 = 0 in most cases), and ψ(ξ), the reaction function, has lowest energy at the two tails which
represent salient image features such as object boundaries. These inverted potential functions are in contrast
to all previous image models, and they are essential for modeling realistic images. The forming of the two
potential functions is closely related to our training process. Recall Equation 3.21, we have shown take the
gradient of λ equal to the difference between the histogram of current synthesized image and the one of
our observed image. Then if the synthesized image contains more larger components of a certain feature
than the original one. The update will shape the new λ to be more like the diffusion type so that the larger
responses are inhibited. On the other hand, if the histogram of synthesized image is too concentrated on
certain response, the λ will be shaped to reaction type so that this feature is encouraged to appear. This
process is illustrated in Fig. 3.30. Recently, especially in the deep neural network cases, instead of learning
a non-linear potential function, people use ReLU function to get similar results. The ReLU function has a
linear response in the positive half axis and be zero at negative half axis. Shown in Fig. 3.29, by setting
the coefficient of ReLU function to be greater or less than zero, we can get same results of encouraging or
preventing a certain feature to appear. We will further discuss this in the later part of Deep FRAME model.

Now we can design our potential function in Equation 3.36 to be

U(I; Λ, S) =

nd∑
i=1

∑
(x,y)∈D

φi(Fi ∗ I(x, y)) +
n∑

i=nd

∑
(x,y)∈D

φi(Fi ∗ I(x, y)). (3.41)

Note that the filter set is divided into two parts S = Sd ∪ Sr, with Sd = {Fi, i = 1, 2, ..., nd} and Sr =
{Fi, i = nd + 1, ..., n}. In most cases, Sd consists of filters such as gradient filters and Laplacian/Gaussian

75

filters which capture general smoothness appearances of real world images, and Sr contains filters such as
Gabor filters at various orientations and scales which characterize salient features of images.

Our PDE can therefore be designed by maximizing Gibbs distribution, which is equivalent to minimizing
the above U(I; Λ, S) by gradient descent. We obtain the following non-linear parabolic partial differential
equation:

dI

dt
=

nd∑
i=1

F−i ∗ φ′i(Fi ∗ I) +

n∑
i=nd

F−i ∗ ψ′i(Fi ∗ I) (3.42)

where F−i (x, y) = −Fi(−x,−y). Thus starting from an input image I(x, y, t) = I, the first term diffuses
the image by reducing the gradients while the second term forms patterns as the reaction forces favor large
filter responses. We call Equation 3.42 the Gibbs Diffusion And Reaction Equation (GRADE).

3.6.5 Properties of GRADE

Property 1: A General Statistical Framework

GRADE as in Equation 3.42 can be considered as an extension to the heat diffusion equation, as in Equation
3.33, on a discrete lattice by defining a vector field

~V = (φ′1(·), ..., φ′nd(·), ψ
′
nd+1(·), ..., ψ′n(·))

and the divergence operator can be generalized to

div = F−1 ∗+...+ F−n ∗ .

Thus Equation 3.42 can be written as
dI

dt
= div(~V). (3.43)

Compared to Equation 3.33 which transfers "heat" among adjacent pixels, Equation 3.43 transfers the "heat"
in many directions on a graph, and the conductivities are defined as functions of the local patterns instead
of just the local gradients. Note that in the discrete lattice, choosing Sd = ∇x,∇y, Sr = ∅, we have
F1 = F−1 = ∇x, F2 = F−2 = ∇y and div = ∇x + ∇y, thus Equation 3.33 and Equation 3.34 are just
special cases of Equation 3.43.

Property 2: Diffusion

Fig. 3.31a and Fig. 3.31b show two best-fit potential functions. Fig. 3.31a shows a round tip at ξ = 0,
and Fig. 3.31b shows a cusp at ξ = 0. Interestingly, real world objects typically show potential function
with a cusp. This is because large part of real world objects have flat intensity, encouraging piece-wisely
constant regions. Intuitively, with γ < 1 and ξ = 0 at location (x, y), φ′(0) forms an attractive basin in
the neighborhood Ni(x, y) specified by filter window Fi at (x, y). For a pixel (u, v) ∈ Ni(x, y), the depth
of attractive basin is ‖ωF−i (u − x, v − y)‖. If a pixel is involved in multiple zero filter responses, it will
accumulate the depth of the attractive basin generated by each filter. Thus unless the absolute value of the
driving force from other well-defined terms is larger than the total depth of the attractive basin at (u, v),
I(u, v) will stay unchanged.

76

(a) φ(ξ), γ ≥ 1 (b) φ(ξ), γ < 1

(c) φ′(ξ), γ ≥ 1 (d) φ′(ξ), γ < 1

Figure 3.31: Here φ(ξ) = a(1− 1
1+(|ξ−ξ0|/b)γ), a > 0, and its derivative φ′(ξ) for a), c) is γ = 2.0 and b),

d)γ = 0.8.

(a) (b) (c) (d) (e) (f)

Figure 3.32: Generated texture patterns.

Property 3: Reaction

The other class of potential function is reaction function. We refer back to Fig. 3.28 where gradients of reac-
tion function "push" activations away from origin. Different from diffusion function, this class of potential
function creates features and brings pixels out of local attraction basins set up by diffusion functions.

With both reaction and diffusion, we can sample a wide variety of textures. Starting from random
uniform noise, we use Langevin equations inspired by Brownian motion as below

dI = −∇U(I)dt+
√

2T (t)dwt (3.44)

where dwt =
√
dtN(0, 1), T is the "temperature" which controls magnitude of random fluctuations. In

the following figure, we use one diffusion filter, the Laplacian of Gaussian filter, and several reaction filters:
isotropic center-surround filters and Gabor filters with different orientations.

77

3.7 Conclusion

In this chapter, we started by asking the question,
What features and statistics are characteristic of a texture pattern, so that texture pairs that share the

same features and statistics cannot be told apart by pre-attentive human visual perception?
In finding suitable features for texture modeling, we have walked through several models in history

including clique-based models and filter-based models. Clique-based models specify their energy function
as feature statistics but such models are shown to be inadequate in modeling texture patterns. Filter-based
models more closely align with human vision as accepted in neurophysiology. Convolution of filters with
an image (filter responses) and histograms of filter activations (marginal statistics projecting an image onto
a filter) seem to be a reasonable choice for features.

With features selected, we then introduced Filters, Random field, and Maximum Entropy (FRAME)
model as a unifying view over both clique-based and filter-based models. We presented a pursuit process
involving Minimax Entropy Principle for pursuing a set of suitable filters and learning suitable potential
functions under Gibbs distribution. Texture ensemble is then introduced and connected to statistical physics
(micro-canonical ensembles and canonical ensembles). Equivalence between FRAME model and Julesz
ensemble on infinite lattice is proved.

Finally, we studied PDE paradigms in synthesizing images and presented two classes of potential func-
tions empirically found in texture modeling - diffusion and reaction. Diffusion is found to destroy features
while reaction is found to create features. We also derived our PDE for texture synthesis, introducing Gibbs
Reaction and Diffusion Equation (GRADE) as a general statistical framework under which lie many other
PDEs used in texture formation.

Here are our attempts on modeling texture patterns and providing a unifying view on texture synthesis.
We hope that our works have sparked excitement and passion for further exploration on this matter.

78

4

Textons

Textons refer to fundamental micro-structures in natural images and are considered as the atoms of pre-
attentive human visual perception (Julesz, 1981 [125]). Unfortunately, the term “texton” remains a vague
concept in the literature for lacking of a good mathematical model. In this chapter, we present various
generative image models for textons.

4.1 Distinguishing Textures and Textons

4.1.1 Julesz’s Confusion

In psychophysics, Julesz [125] and colleagues discovered that pre-attentive vision is sensitive to some basic
image features while ignoring other features. He conjectured that pre-attentive human vision is sensitive to
local patterns called textons. Figure 4.1 illustrates the first batch of experiments for texture discrimination.

Figure 4.1: Pre-attentive vision is sensitive to local patterns called textons.

In a second batch of experiments, Julesz measured the response time of human subjects in detecting a
target element among a number of distractors in the background. For example, Fig. 4.2 shows two pairs
of elements in comparison. The response time for the upper pair is instantaneous (100 − 200 ms) and
independent of the number of distractors. In contrast, for the lower pair the response time increases linearly
with the number of distractors. This discovery was very important in psychophysics and motivated Julesz to
conjecture a pre-attentive stage that detects some atomic structures, such as elongated blobs, bars, crosses,
and terminators, which he called “textons” for the first time.

The early texton studies were limited by their exclusive focus on artificial texture patterns instead of

79

Figure 4.2: Julesz textures show that pre-attentive vision are sensitive to local image structures such as
edges, bars, and end points.

natural images. It was shown that the perceptual textons could be adapted through training. Thus the
dictionary of textons must be associated with or learned from the ensemble of natural images. Despite the
significance of Julesz’s experiments, there have been no rigorous mathematical definitions for textons. Later
in this chapter, we argue that textons must be defined in the context of a generative model of images.

In natural images, textures and textons are often interwoven where the image patches are considered to
be textures or textons which are respectively from manifolds of different dimensions in the image space. As
we have discussed in the previous chapter, the texture patches are from high-dimensional manifolds defined
by implicit functions, i.e. the statistical constraints. In this chapter, we will show the texton patches are from
low-dimensional manifolds defined by explicit functions, i.e. generative models.

4.1.2 Neural Coding Schemes

Julesz’s experiments are inherently related to how neurons respond to different kinds of stimuli. Studies in
neuroscience reveal that neurons propagate signals by generating characteristic electrical pulses called action
potentials. With the presence of external stimuli like light and specific image patterns, sensory neurons fire
sequences of action potentials in various temporal patterns, in which information about the stimulus is
encoded and transmitted to the brain. This process leads to the different perceptions of textures and textons,
and justifies the pre-attentive stage proposed by Julesz. Yet, how exactly the neurons represent the signals is
still a topic of debate. Here, we present three hypothesized coding schemes and their relation to texton and
texture modeling.

Population coding is a method that represents stimuli with the joint activities of multiple neurons. In this
coding scheme, each neuron has a distribution of responses over some set of inputs. The responses of many
neurons are combined to determine a final value about the inputs, which triggers further reactions in the
signal propagation process. In our discussion of image modeling, we can draw parallel between the filters
and the neurons. Indeed, the FRAME model combines the potentials of filter responses, i.e., the histogram
statistics, and outputs a value to represent an image’s likelihood of belonging to a concept. In this sense,

80

both the histograms and the neuron responses encode the impression that we have on certain visual stimuli.
Another coding scheme is the grandmother cell coding scheme. In this formulation, high-level concepts

are represented by a single neuron. It activates when a person perceives a specific entity, such as one’s
grandma. To be more concise, there is a single cell in your brain that responds multimodally to your grand-
mother, granting you the percept of a single entity when you hear the sounds "grandmother", "grandma",
and "grams", capture the sight of her smiling, wrinkly face, and recall the tasty cookies she once made as
well as the stories she once told you. The hypothesis is supported by an observation in 2004, when an
epilepsy patient at the UCLA Medical Center whose brain was being monitored showed vigorous neural
responses to several pictures of Jennifer Aniston, but not to other celebrities. Though the theory itself is still
controversial, we can nonetheless incorporate it in our study of computer vision. Borrowing the idea of the
grandmother cells, we can develop object templates that are invariant under various transformations. These
templates, such as cars, represent high-level concepts as a whole rather than individual parts that make up
the concept, such as the wheels and front doors of the cars.

The last coding scheme that we are interested in is the sparse coding, where an object is encoded by
the strong activation of a relatively small set of neurons. In fact, this method is the foundation of the texton
models that we will introduce later in this chapter. Interested readers should proceed to 4.3 to learn about
the sparse coding scheme.

4.2 Generative Models in Harmonic Analysis

4.2.1 Basis and Frame

In linear algebra, a set B of vectors in a vector space V is called a basis if all elements in V can be written
as a unique linear combination of vectors in B. A vector space may have several different bases. Yet all the
bases have the same amount of elements equal to the dimension of the vector space. For a typical image with
1024×1024 pixels, the dimension of the image space which it belongs to is 220. Consequently, a basis must
have 220 vectors to reconstruct any image of the same size. However, as we have learned earlier, natural
images only occupy a small subset of the entire image space, making it trickier to select a set of vectors to
represent natural images more efficiently.

If the inner product operation is well defined in a vector space V , then V is a inner product space. We
call a basis B = {b1, b2, .., bn} for V orthonormal if the elements are all unit vectors and orthogonal to each
other. The Parseval’s Identity for orthonormal basis states that

∀x ∈ V, ‖x‖2 =

n∑
i=1

‖〈xi, bi〉‖2 .

We can slightly loosen the constraint so that a collection of vectors F = {f1, ..., fm} satisfies

∀x ∈ V, A ‖x‖2 ≤
n∑
i=1

‖〈xi, fi〉‖2 ≤ B ‖x‖2 ,

then, we call F a frame for the vector space with the corresponding frame bounds A and B. Furthermore,
a frame is a tight frame if A = B. In finite-dimensional vector spaces, the frames are exactly the spanning
sets. Therefore, a vector can be expressed as a linear combination of the frame vectors in a redundant
way. Using a frame, it is possible to create a simpler, more sparse representation of a signal compared to
representing it strictly with linearly independent vectors.

81

In general, if a set of vectors is still a basis after removing some elements, then it is called overcom-
plete. In other words, the number of vectors for a overcomplete basis is greater than the dimension of the
input vector. Practically speaking, overcompleteness can help us to achieve a more stable, robust, and com-
pact decomposition of image vectors. We shall see its importance in the sparse coding model of texton
representation.

4.2.2 Linear Factor Analysis

4.3 Sparse Coding

4.3.1 Image Representation

The purpose of vision, biologic and machine, is to compute a hierarchy of increasingly abstract interpre-
tations of the observed images (or image sequences). Therefore, it is of fundamental importance to know
what are the descriptions used at each level of interpretation. By analogy to physics concepts, we wonder
what are the visual “electrons”, visual “atoms”, and visual “molecules” for visual perception. The pursuit
of basic images and perceptual elements is not just for intellectual curiosity but has important implications
in a series of practical problems. For example,

1. Dimension reduction. Decomposing an image into its constituent components reduces information
redundancy and leads to lower dimensional representations. As we will show in later examples, an
image of 256×256 pixels can be represented by about 500 image bases, which are, in turn, reduced to
50-80 texton elements. The dimension of representation is thus reduced by about 100 folds. Further
reductions are achieved in motion sequences and lighting models.

2. Variable decoupling. The decomposed image elements become more and more independent of each
other and thus are spatially nearly decoupled. This facilitates image modeling which is necessary for
visual tasks such as segmentation and recognition.

3. Biologic modeling. Micro-structures in natural images provide ecological clues for understanding the
functions of neurons in early stages of biologic vision systems [9].

In the literature, there are several threads of research investigating fundamental image structures from
different perspectives, with many questions left unanswered.

Firstly, in neurophysiology, the cells in the early visual pathway (retina, LGN, and V1) of primates are
found to compute some basic image structures at various scales and orientations [112]. This motivated some
well-celebrated image pyramid representations including Laplacian of Gaussians (LoG), Gabor functions,
and their variants. However, very little is known about how V1 cells are grouped into larger structures in
higher levels (say, V2 and V4). Similarly, it is unclear what are the generic image representations beyond
the image pyramids in image analysis.

Secondly, in harmonic analysis, one treats images as 2D functions, then it can be shown that some
classes of functionals (such as Sobolev, Hölder, Besov spaces) can be decomposed into bases, for example,
Fourier, wavelets, wedgelets, and ridgelets. It was proven that the Fourier, wavelets, and ridgelets bases are
independent components for various functional spaces. But the natural image ensembles known to be very
different from those classic mathematical functional spaces.

The third perspective, and the most direct attack to the problem, is the study of natural image statistics
and image component analysis. One important work is done by Olshausen and Field [188] who learned some
over-complete image bases from natural image patches (12 × 12 pixels) with the idea of sparse coding. In

82

contrast to the orthogonal and complete bases in Fourier analysis or tight frame in wavelet transforms, the
learned bases are highly correlated, and a given image is coded by a sparse population in the over-complete
dictionary. Added to the sparse coding idea is independent component analysis (ICA) which decomposes
images into a linear superposition of some image bases minimizing a measure of dependence between the
coefficients of these bases [14].

4.3.2 Olshausen-Field model

Figure 4.3: Gabor wavelets are sine and cosine waves multiplied by Gaussian functions.

Figure 4.4: The sparse coding model assumes that the observed signals lie on the low dimensional subspaces
spanned by the basis vectors.

Figure 4.5: The above image patches are the basis vectors learned from natural image patches by the sparse
coding model.

In image coding, one starts with a dictionary of base functions

Ψ = {ψ`(u, v), ` = 1, ..., Lψ}.
For example, some commonly used bases are Gabor, Laplacian-of-Gaussian (LoG), and other wavelet

transforms. Let A = (x, y, τ, σ) denote the translation, rotation and scaling transform of a base function,
and GA 3 A the orthogonal transform space (group), then we obtain a set of image bases ∆,

83

∆ = {ψ`(u, v,A) : A = (x, y, τ, σ) ∈ GA, ` = 1, ..., Lψ}.

A simple generative image model, adopted in almost all image coding schemes, assumes that an image
I is a linear superposition of some image bases selected from ∆ plus a Gaussian noise image n.

I =

nB∑
i

αi ·ψi + n, ψi ∈ ∆, ∀i, (4.1)

where nB is the number of bases and αi is the coefficient of the i-th base ψi.
As ∆ is over-complete*, the variables (`i, αi, xi, yi, τi, σi) indexing a base ψi are treated as latent (hid-

den) variables and must be inferred probabilistically, in contrast to deterministic transforms such as the
Fourier transform. All the hidden variables are summarized in a base map,

B = (nB, {bi = (`i, αi, xi, yi, τi, σi) : i = 1, 2, ..., nB}).

If we view each base ψi as an attributed point with attributes bi = (`i, αi, xi, yi, τi, σi), then B is an
attributed spatial point process.

In the image coding literature, the bases are assumed to be independently and identically distributed
(iid), and the locations, scales and orientations are assumed to be uniformly distributed, so

p(B) = p(nB)

nB∏
i=1

p(bi), (4.2)

p(bi) = p(αi) · unif(`i) · unif(xi, yi) · unif(τi) · unif(σi). (4.3)

It was well-known that responses of image filters on natural images have high kurtosis histograms. This
means that most of the time the filters have nearly zero response (i.e. they are silent) and they are activated
with large response occasionally. This leads to the sparse coding idea by Olshausen and Field [188].† For
example, p(α) is chosen to be a Laplacian distribution, or a mixture of two Gaussians with σ1 close to zero.
For all

i = 1, ..., nB ,

p(αi) ∼ exp{−|αi|/c} or p(αi) =
2∑
j=1

ωjN(0, σj).

In fact, as long as p(α) has high kurtosis, the exact form of p(α) is not so crucial. For example, one can
choose a mixture of two uniform distributions on a range [−σj , σj], j = 1, 2 respectively, with σ1 close to
zero,

p(αi) =

2∑
j=1

ωjunif[−σj , σj].

A slight confusion in the literature is that the sparse coding scheme assumes nB = |∆|, i.e. all bases in
the set are “activated”. The prior p(α) is supposed to suppress most of the activations to zero. It is simple

*The number of bases in ∆ is often 100 times larger than the number of pixels in an image.
†Note that the filter responses are convolutions of a filter with image in a deterministic way, and are different from the coeffi-

cients of the bases.

84

to prove that this is equivalent to assume p(α) to be a uniform distribution and put a penalty to the model
complexity, for example p(nB) ∝ e−λnB . So the sparse coding prior is essentially a model complexity term.

In the above image model, the base map B includes the hidden variables and the dictionary Ψ are
parameters. For example, Olshausen and Field used Lψ = 144 base functions, each being a 12 × 12
matrix. Following an EM-learning algorithm, they learned Ψ from a large number of natural image patches.
Fig. 12.5 shows some of the 144 base functions. Such bases capture some image structures and are believed
to bear resemblance to the responses of simple cells in V1 of primates.

In their experiments, the training images are chopped into 12 × 12 pixel patches, therefore they didn’t
really inferred the hidden variables for the transformation Ai. Thus the learned bases are not aligned at
centers and are rather noisy.

Figure 4.6: The observed image can be reconstructed from foreground and background textons.

4.3.3 A three-level generative model

Our comparison study leads us to a three-level generative model as shown in Fig. 4.12. In this model, an
image I is generated by a base map B as in image coding, and the bases are selected from a dictionary Ψ
with some orthogonal transforms.

The base map B is, in turn, generated by a texton map T. The texton elements are selected from a texton
dictionary Π with some orthogonal transforms. Each texton element in T consists of a few bases with a
deformable geometric configuration. So we have,

T
Π−→ B

Ψ−→ I,

with
Ψ = {ψ`, ` = 1, 2, ..., Lψ}, and Π = {π`; ` = 1, 2, ...,Lπ}.

By analogy to the waveform-phoneme-word hierarchy in speech, the pixel-base-texton hierarchy presents
an increasingly abstract visual description. This representation leads to dimension reduction and the texton
elements account for spatial co-occurence of the image bases.

To clarify terminology, a base function ψ ∈ Ψ is like a mother wavelet and an image base bi in the base
map B is an instance under certain transforms of a base function. Similarly, a “texton” in a texton dictionary

85

Figure 4.7: The spatial arrangement of textons can be modeled by a point process model.

π ∈ Π is a deformable template, while a “texton element” is an instance in the texton map T which is a
transformed and deformed version of a texton in Π.

For natural images, it is reasonable to guess that the number of base functions is about |Ψ| = O(10),
and the number of textons is in the order of |Π| = O(103) for various combinations. Intuitively, textons
are meaningful objects viewed at distance (i.e. small scale), such as stars, birds, cheetah blobs, snowflakes,
beans, etc.

In this chapter, we fix the base dictionary to three common base functions: Laplacian-of-Gaussian,
Gabor cosine, Gabor sine, i.e.,

Ψ = { ψ1, ψ2, ψ3 } = { LoG,Gcos,Gsin }.

These base functions are not enough for patterns like hair or water, etc. But we fix them for simplicity
and focus on the learning of texton dictionary Π. This paper is also limited to learning textons for each
individual texture pattern instead of generic natural images, therefore |Π| is a small number for each texture.

Before we formulate the problem, we show an example of simple star pattern to illustrate the generative
texton model. In Fig. igure?, we first show the three base functions in Ψ (the first row) and their symbolic
sketches. Then for an input image, a matching pursuit algorithm is adopted to compute the base map B in a
bottom-up fashion. This base map will be modified later by stochastic inference. It is generally observed that
the base map B can be divided into two sub-layers. One sub-layer has relatively large (“heavy”) coefficients
αi and captures some larger image structures. For the star pattern these are the LoG bases shown in the first
column. We show both the symbolic sketch of these LoG bases (above) and the image generated by these
bases (below). The heavy bases are usually surrounded by a number of “light” bases with relatively small
coefficients αi. We put these secondary bases in another sub-layer (see the second column of Fig. When
these image bases are superpositioned, they generate a reconstructed image (see the third column in Fig.
The residues of reconstruction are assumed to be Gaussian noise.

By an analogy to physics model, we call the heavy bases the “nucleus bases” as they have heavy weights
like protons and neutrons, and the light bases the “electron bases”. Fig. 4.9 displays an “atomic” model for

86

Figure 4.8: A texton template is a deformable composition of basis vectors.

Figure 4.9: A texton template is a deformable composition of basis vectors.

the star texton. It is a LoG base surrounded by 5 electron bases.
The three-level generative model is governed by a joint probability specified with parameters Θ =

(Ψ,Π,κ).
p(I,B,T; Θ) = p(I|B; Ψ)p(B|T; Π)p(T;κ),

where Ψ and Π are dictionaries for two generating processes, and p(T;κ) is a descriptive (Gibbs) model
for the spatial distribution of the textons as a stochastic attributed point process.

We rewrite the base map as

B = (nB, {bi = (`i, αi, xi, yi, τi, σi) : i = 1, 2, ..., nB}). (4.4)

Because we assume Gaussian distribution N(0, σ2
o) for the reconstruction residues, we have

p(I|B; Ψ) ∝ exp{−
∑

(u,v)∈D

(I(u, v)−
nB∑
i=1

αiψ`i(u, v;xi, yi, τi, σi))
2/2σ2

o}. (4.5)

The nB bases in base map B are divided into nT + 1 groups (nT < nB).

{bi = (`i, αi, xi, yi, τi, σi) : i = 1, 2, ..., nB} = $0 ∪$1 ∪ · · · ∪$nT .

Bases in $0 are “free electrons" which do not belong to any texton, and are subject to the independent
distribution p(bj) in equation (4.3). Bases in any other class form a texton element Tj , and the texton map is

T = (nT , {Tj = (`j , αj , xj , yj , τj , σj , δj) : j = 1, 2, ..., nT }).

87

Figure 4.10: The image can be decomposed into sub-bands at multiple scales.

Figure 4.11: The concept of textons can also be generalize to incorporate lighting variations.

Each texton element Tj is specified by its type `j , photometric contrast αj , translation (xj , yj), rotation
τj , scaling σj and deformation vector δj . A texton π ∈ Π consists of m image bases with a certain
deformable configuration

π = ((`1, α1, τ1, σ1), (`2, α2, δx2, δy2, δτ2, δσ2), ..., (`m, αm, δxm, δym, δτm, δσm)).

The (δx, δy, δτ, δσ) are the relative positions, orientations and scales. Therefore, we have

p(B|T; Π) = p(|$0|)
∏
bj∈$0

p(bj)

nT∏
c=1

p($c|Tc;π`c).

p(T;κ) is another distribution which accounts for the number of textons nT and the spatial relationship
among them. It can be a Gibbs model for attributed point process. For simplicity, we assume the textons are
independent at this moment as a special Gibbs model.

By integrating out the hidden variables, we obtain a likelihood probability for any observable image
Iobs,

p(Iobs; Θ) =

∫
p(Iobs|B; Ψ)p(B|T; Π)p(T;κ) dB dT.

88

Figure 4.12: A three-level generative model: an image I is a linear addition of some image bases selected
from a base dictionary Ψ, such as Gabor or Laplacian of Gaussians. The base map is further generated by a
smaller number of textons selected from a texton directionry Π. Each texton consists of a number of bases
in certain deformable configurations.

In p(I; Θ) above, the parameters Θ (dictionaries, etc.) characterize the entire image ensemble, like the
vocabulary for English or Chinese languages. In contrast, the hidden variables B,T are associated with an
individual image I, and correspond to the parsing tree in language.

Our goal is to learn the parameters Θ = (Ψ,Π,κ) by maximum likelihood estimation, or equivalently
minimizing a Kullback-Leibler divergence between a underlying probability of images f(I) and p(I; Θ)

Θ∗ = (Ψ,Π,κ)∗ = arg minKL(f(I)||p(I; Θ)) = arg max
∑
m

log p(Iobs
m ; Θ) + ε (4.6)

where ε is an approximation error which diminishes as sufficient data are available for training. In
practice, ε may decide the complexity of the models, and thus the number of base functions Lψ and textons
Lπ. For clarity, we use only one large Iobs for training, because multiple images can be considered just
patches of a larger image. For motion and lighting models in later sections, Iobs is extended to image
sequence and image set with illumination variations.

By fitting the generative model to observed images, we can learn the texton dictionary as parameters of
the generative model. We study the geometric, dynamic, and photometric structures of the texton representa-
tion by further extending the generative model to account for motion and illumination variations. 1) For the
geometric structures, a texton consists of a number of image bases with deformable spatial configurations.
The geometric structures are learned from static texture images. 2) For the dynamic structures, the motion
of a texton is characterized by a Markov chain model in time which sometimes can switch geometric config-
urations during the movement. We call the moving textons as “motons”. The dynamic models are learned
using the trajectories of the textons inferred from a video sequence. 3) For photometric structures, a texton
represents the set of images of a 3D surface element under varying illuminations and is called a “lighton”
in this . We adopt an illumination-cone representation where a lighton is a texton triplet. For a given light
source, a lighton image is generated as a linear sum of the three texton bases. We present a sequence of
experiments for learning the geometric, dynamic, and photometric structures from images and videos, and
we also present some comparison studies with K-means clustering, sparse coding, independent component
analysis, and transformed component analysis. We shall discuss how general textons can be learned from
generic natural images.

89

4.4 Active basis model

4.4.1 Olshausen-Field model for sparse coding

The active basis model is based on the sparse coding model of Olshausen and Field (1996). Olshausen and
Field proposed that the role of simple V1 cells is to compute sparse representations of natural images. Let
{Im,m = 1, ...,M} be a set of small image patches. For example, they might be 12× 12 patches, in which
case Im ∈ R12×12. We may think of each Im as a two-dimensional function defined on the 12× 12 lattice.
The Olshausen-Field model seeks to represent these images by

Im =
N∑
i=1

cm,iBi + Um, (4.7)

where (Bi, i = 1, ..., N) is a dictionary of basis functions defined on the same image lattice (e.g.,
12 × 12) as Im, cm,i are the coefficients, and Um is the unexplained residual image. N is often assumed
to be greater than the number of pixels in Im, so the dictionary is said to be over-complete and is therefore
redundant. However, the number of coefficients (cm,i, i = 1, ..., N) that are non-zero (or significantly
different from zero) is assumed to be small (e.g., less than 10) for each image Im.

One may also assume that the basis functions in the dictionary are translated, rotated and dilated versions
of one another, so that each Bi can be written as Bx,s,α, where x is the location (a two-dimensional vector),
s is the scale, and α is the orientation. We call such a dictionary self-similar, and we call (x, s, α) the
geometric attribute of Bx,s,α.

Model (4.7) then becomes

Im =
∑
x,s,α

cm,x,s,αBx,s,α + Um, (4.8)

whereBx,s,α are translated, rotated and dilated copies of a single basis function, e.g.,B = Bx=0,s=1,α=0,
and (x, s, α) are properly discretized (default setting: α is discretized into 16 equally spaced orientations).
B can be learned from training images {Im}.

From now on, we assume that the dictionary of basis functions is self-similar, and {Bx,s,α, ∀(x, s, α)}
is already given. In the following, we assume that Bx,s,α is a Gabor wavelet, and we also assume that Bx,s,α
is normalized to have unit `2 norm so that |Bx,y,α|2 = 1. Bx,s,α may also be a pair of Gabor sine and cosine
wavelets, so that for each Gabor wavelet B, B = (B0, B1). The corresponding coefficient c = (c0, c1), and
cB = c0B0 + c1B1. The projection 〈I, B〉 = (〈I, B0〉, 〈I, B1〉), and |〈I, B〉|2 = 〈I, B0〉2 + 〈I, B1〉2.

Given the dictionary (Bx,s,α,∀(x, s, α)), the encoding of an image Im amounts to inferring (cm,x,s,α, ∀(x, s, α))
in (4.8) under the sparsity constraint, which means that only a small number of (cm,x,s,α) are non-zero. That
is, we seek to encode Im by

Im =

n∑
i=1

cm,iBxm,i,sm,i,αm,i + Um, (4.9)

where n � N is a small number, and (xm,i, sm,i, αm,i, i = 1, ..., n) are the geometric attributes of the
selected basis functions whose coefficients (cm,i) are non-zero. The attributes (xm,i, sm,i, αm,i, i = 1, ..., n)
form a spatial point process (we continue to use i to index the basis functions, but here i only runs through
the n selected basis functions instead of all the N basis functions as in (4.7)).

90

4.4.2 Active basis model for shared sparse coding of aligned image patches

The active basis model was proposed for modeling deformable templates formed by basis functions.

Suppose we have a set of training image patches {Im,m = 1, ...,M}. This time we assume that they
are defined on the same bounding box, and the objects in these images come from the same category. In
addition, these objects appear at the same location, scale and orientation, and in the same pose. See Figure
4.13 for 9 image patches of deer. We call such image patches aligned.

The active basis model is of the following form

Im =

n∑
i=1

cm,iBxi+∆xm,i,s,αi+∆αm,i + Um, (4.10)

where B = (Bxi,s,αi , i = 1, ..., n) form the nominal template of an active basis model (sometimes we
simply call B an active basis template). Here we assume that the scale s is fixed and given. Bm =
(Bxi+∆xm,i,s,αi+∆αm,i , i = 1, ..., n) is the deformed version of the nominal template B for encoding Im,
where (∆xm,i,∆αm,i) are the perturbations of the location and orientation of the i-th basis function from
its nominal location xi and nominal orientation αi respectively. The perturbations are introduced to account
for shape deformation. Both ∆xm,i and ∆αm,i are assumed to vary within limited ranges (default setting:
∆xm,i ∈ [−3, 3] pixels, and ∆αm,i ∈ {−1, 0, 1} × π/16).

4.4.3 Prototype algorithm

Given the dictionary of basis functions {Bx,s,α, ∀x, s, α}, the learning of the active basis model from the
aligned image patches {Im} involves the sequential selection of Bxi,s,αi and the inference of its perturbed
version Bxi+∆xm,i,s,αi+∆αm,i in each image Im. We call the learning as supervised, because the bounding
boxes of the objects are given and the images are aligned. See Figure 4.13 for an illustration of the learning
results.

In this subsection, we consider a prototype version of the shared matching pursuit algorithm, which is to
be revised in the following subsections. The reason we start from this prototype algorithm is that it is simple
and yet captures the key features of the learning algorithm.

We seek the maximal reduction of the least squares reconstruction error in each iteration (recall that the
basis functions are normalized to have unit `2 norm):

M∑
m=1

|Im −
n∑
i=1

cm,iBxi+∆xm,i,s,αi+∆αm,i |2. (4.11)

91

Figure 4.13: (a) An active basis model is a composition of a small number of basis functions, such as Gabor
wavelets at selected locations and orientations. Each basis function can perturb its location and orientation
within limited ranges. (b) Supervised learning of active basis model from aligned images. In this example,
two active basis models are learned using Gabor wavelets at two different scales (there is no variation in
the aspect ratio of the Gabor wavelets used). The first row displays the 9 training images. The second row:
the first plot is the nominal template formed by 50 basis functions. The rest of the plots are the deformed
templates matched to the images by perturbing the basis functions. The third row: the same as the second
row, except that the scale of the Gabor wavelets is about twice as large, and the number of wavelets is 14.
The last row displays the linear reconstruction of each training image from 100 selected and perturbed basis
functions.

92

The prototype algorithm is a greedy algorithm which minimizes the reconstruction error:

0. Initialize i← 0. For m = 1, ...,M , initialize the residual image Um ← Im.

1. i← i+ 1. Select the next basis function by

(xi, αi) = arg max
x,α

M∑
m=1

max
∆x,∆α

|〈Um, Bx+∆x,s,α+∆α〉|2,

where max∆x,∆α is local maximum pooling within the small ranges of ∆xm,i and ∆αm,i.

2. For m = 1, ...,M , given (xi, αi), infer the perturbations in location and orientation by retrieving the
arg-max in the local maximum pooling of step 1:

(∆xm,i,∆αm,i) = arg max
∆x,∆α

|〈Um, Bxi+∆x,s,αi+∆α〉|2. (4.12)

Let cm,i ← 〈Um, Bxi+∆xm,i,s,αi+∆αm,i〉, and update the residual image by explaining away:

Um ← Um − cm,iBxi+∆xm,i,s,αi+∆αm,i . (4.13)

3. Stop if i = n, else go back to step 1.

Algorithm 4: Prototype Algorithm
Simultaneous (or collaborative) sparse approximation of multiple signals has been proposed in harmonic

analysis and signal processing literature.
In Equation (4.13), the perturbed basis function Bxi+∆xm,i,s,αi+∆αm,i explains away part of Um. As

a result, nearby basis functions that overlap with Bxi+∆xm,i,s,αi+∆αm,i tend not to be selected in future
iterations. So the basis functions selected for each deformed template Bm = (Bxi+∆xm,i,s,αi+∆αm,i , i =
1, · · · , n) usually have little overlap with each other. For computational and modeling convenience, we
shall assume that these selected basis functions are orthogonal to each other, so that the coefficients can be
obtained by projection: cm,i = 〈Im, Bxi+∆xm,i,s,αi+∆αm,i〉.

Correspondingly, the explaining-away step can then be carried out by local inhibition. Specifically,
after we identify the perturbed basis function Bxi+∆xm,i,s,αi+∆αm,i , we simply prohibit nearby basis func-
tions that are correlated with Bxi+∆xm,i,s,αi+∆αm,i from being included in the deformed template Bm. In
practice, we allow small correlations between the basis functions in each Bm.

4.4.4 Statistical modeling

The above algorithm guided by (4.11) implicitly assumes that the unexplained background image Um is
Gaussian white noise. This assumption can be problematic because the unexplained background may con-
tain salient structures such as edges, and the Gaussian white noise distribution clearly cannot account for
such structures. This is why we need to revise the above algorithm which is based on the Gaussian white
noise assumption. A better assumption is to assume that Um follows the same distribution as that of natural
images.

More precisely, the distribution of Im given the deformed template Bm = (Bxi+∆xm,i,s,αi+∆αm,i , i =
1, ..., n), i.e., p(Im | Bm), is obtained by modifying the distribution of natural images q(Im) in such a way

93

that we only change the distribution ofCm = (cm,i = 〈Im, Bxi+∆xm,i,s,αi+∆αm,i〉, i = 1, ..., n) from q(Cm)
to p(Cm), while leaving the conditional distribution of Um given Cm unchanged. Here p(Cm) and q(Cm)
are the distributions of Cm under p(Im | Bm) and q(Im) respectively. Thus the model is in the form of
foreground p(Cm) popping out from background q(Im). Specifically, p(Im | Bm) = q(Im)p(Cm)/q(Cm).

The reason for such a form is as follows. Cm is the projection of Im into Bm. Let Um be the
projection of Im into the remaining subspace that is orthogonal to Bm. Then p(Im | Bm)/q(Im) =
p(Cm, Um)/q(Cm, Um) = p(Cm)/q(Cm). The second equality follows from the assumption that p(Um|Cm) =
q(Um|Cm), i.e., we keep the conditional distribution of Um given Cm fixed.

For computational simplicity, we further assume (cm,i = 〈Im, Bxi+∆xm,i,s,αi+∆αm,i〉, i = 1, ..., n) are
independent given Bm, under both p and q, so

p(Im | Bm) = q(Im)
n∏
i=1

pi(cm,i)

q(cm,i)
,

where q(c) is assumed to be the same for i = 1, ..., n because q(Im) is translation and rotation invariant.
q(c) can be pooled from natural images in the form of a histogram of Gabor filter responses. This histogram
is heavy-tailed because of the edges in natural images.

For parametric modeling, we model pi(cm,i)/q(cm,i) in the form of exponential family model. Specifi-
cally, we assume the following exponential family model pi(c) = p(c;λi), which is in the form of exponen-
tial tilting of the reference distribution q(c):

p(c;λ) =
1

Z(λ)
exp{λh(|c|2)}q(c), (4.14)

so that p(c;λ)/q(c) is in the exponential form. We assume λi > 0, and h(r) is a sigmoid-like function
of the response r = |c|2 that saturates for large r (recall that the Gabor filter response c = (c0, c1) consists
of responses from the pair of Gabor sine and cosine wavelets, and |c|2 = c2

0 + c2
1). Specifically, we assume

that h(r) = ξ[2/(1 + e−2r/ξ) − 1], so h(r) ≈ r for small r, and h(r) → ξ as r → ∞ (default setting:
ξ = 6). The reason we want h(r) to approach a fixed constant for large r is that there can be strong edges
in both the foreground and background, albeit with different frequencies. p(c;λ)/q(c) should approach the
ratio between these two frequencies for large r = |c|2. In (4.14),

Z(λ) =

∫
exp{λh(r)}q(c)dc = Eq[exp{λh(r)}]

is the normalizing constant.

µ(λ) = Eλ[h(r)] =

∫
h(r)p(c;λ)dc

is the mean parameter. Both Z(λ) and µ(λ) can be computed beforehand from a set of natural images.
The exponential family model can be justified by the maximum entropy principle. Given the deformed

template Bm = (Bxi+∆xm,i,s,αi+∆αm,i , i = 1, ..., n), consider the coefficients obtained by projection:
(cm,i(Im) = 〈Im, Bxi+∆xm,i,s,αi+∆αm,i〉, i = 1, ..., n). Suppose we want to find a probability distribution
p(Im | Bm) so that E[h(|cm,i(Im)|2)] = µi for some fixed µi, i = 1, ..., n, where µi can be estimated from
the training images. Then among all the distributions that satisfy the constraints on E[h(|cm,i(Im)|2)], the
distribution that is closest to q(Im) in terms of the Kullback-Leibler divergence is given by

p(Im | Bm) =
1

Z(Λ)
exp{

n∑
i=1

λih(|cm,i(Im)|2)}q(Im),

94

where Λ = (λi, i = 1, ..., n), Z(Λ) = Eq[exp{∑n
i=1 λih(|cm,i(Im)|2)] is the normalizing constant,

and Λ is chosen to satisfy the constraints on E[h(|cm,i(Im)|2)]. If we further assume that cm,i(Im) are
independent of each other for i = 1, ..., n under q(Im), then cm,i(Im) are also independent under p(Im |
Bm), and their distributions are of the form (4.14).

In order to choose the nominal template B and the deformed templates {Bm,m = 1, ...,M}, we want
p(Im | Bm) to be farthest from q(Im) in terms of Kullback-Leibler divergence. From a classification point
of view, we want to choose B and {Bm} so that the features {h(|cm,i|2), i = 1, ..., n} lead to the maximal
separation between training images (e.g., images of deer) and generic natural images.

The log-likelihood ratio between the current model p(Im|Bm) and the reference model q(Im) is

l({Im} | B, {Bm},Λ) =
M∑
m=1

log
p(Im|Bm)

q(Im)
(4.15)

=

M∑
m=1

n∑
i=1

[
λih(|〈Im, Bxi+∆xm,i,s,αi+∆αm,i〉|2)− logZ(λi)

]
. (4.16)

The expectation of the above log-likelihood ratio is the Kullback-Leibler divergence between p(Im |
Bm) and q(Im).

Given the training images {Im,m = 1, ...,M}, ∑M
m=1 log q(Im) is a constant. Thus maximizing

the log-likelihood ratio
∑M

m=1 log p(Im | Bm,Λ)/q(Im) is equivalent to maximizing the log-likelihood∑M
i=1 log p(Im | Bm,Λ). So in the following, with a slight abuse of terminology, we occasionally refer to

the log-likelihood ratio as the log-likelihood.

4.4.5 Shared matching pursuit

We revise the prototype algorithm in subsection (4.4.3) so that each iteration seeks the maximal increase of
the log-likelihood ratio (4.16) instead of the maximum reduction of the least squares reconstruction error

95

(4.11) as in subsection (4.4.3). The revised version of the shared matching pursuit algorithm is as follows.

0. Initialize i← 0. For m = 1, ...,M , initialize the response maps Rm(x, α)← 〈Im, Bx,s,α〉 for all
(x, α).

1. i← i+ 1. Select the next basis function by finding

(xi, αi) = arg max
x,α

M∑
m=1

max
∆x,∆α

h(|Rm(x+ ∆x, α+ ∆α)|2),

where max∆x,∆α is again local maximum pooling.

2. For m = 1, ...,M , given (xi, αi), infer the perturbations by retrieving the arg-max in the local
maximum pooling of step 1:

(∆xm,i,∆αm,i) = arg max
∆x,∆α

|Rm(xi + ∆x, αi + ∆α)|2.

Let cm,i ← Rm(xi + ∆xm,i, αi + ∆αm,i), and update Rm(x, α)← 0 if the correlation

corr[Bx,s,α, Bxi+∆xm,i,s,αi+∆αm,i] > ε

(default setting: ε = .1). Then compute λi by solving the maximum likelihood equation
µ(λi) =

∑M
m=1 h(|cm,i|2)/M .

3. Stop if i = n, else go back to step 1.

Algorithm 5: Revised Prototype Algorithm

For each candidate (xi, αi), the maximum likelihood equation µ(λi) =
∑M

m=1 h(|cm,i|2)/M is obtained
by taking the derivative of the log-likelihood ratio, where µ(λi) = Eλi [h(|c|2)] =

∫
h(|c|2)p(c;λi)dc is the

mean parameter, and is a monotonically increasing function of λi > 0. So its inverse µ−1() is also a
monotonically increasing function. λi is solved so that µ(λi) matches the empirical average of h(|cm,i|2),
m = 1, ...,M . The function µ() can be computed and stored over a discrete set of equal-spaced values, so
that λi can be solved by looking up these values with linear interpolations between them.

Because h() is monotonically increasing, the maximized log-likelihood ratio is monotone in the esti-
mated λi. The estimated λi is in turn monotone in the average

∑M
m=1 h(|cm,i|2)/M . So the maximized

log-likelihood ratio is monotone in
∑M

m=1 h(|cm,i|2)/M . Therefore, in step [1], (xi, αi) is chosen by maxi-
mizing the sum

∑M
m=1 max∆x,∆α h(|Rm(x+ ∆x, α+ ∆α)|2) over all possible (x, α).

In step [2], the arg-max basis function inhibits nearby basis functions to enforce the approximate orthog-
onality constraint. The correlation is defined as the square of the inner product between the basis functions
and can be computed and stored beforehand.

After learning the template from training images {Im}, we can use the learned template to detect the

96

object in a testing image I.

1. For every pixel X , compute the log-likelihood ratio l(X), which serves as the template matching
score at putative location X:

l(X) =
n∑
i=1

[
λi max

∆x,∆α
h(|〈I, BX+xi+∆x,s,αi+∆α〉|2)− logZ(λi)

]
. (4.17)

2. Find maximum likelihood location X̂ = arg maxX l(X). For i = 1, ..., n, inferring perturbations by
retrieving the arg-max in the local maximum pooling in step [1]:

(∆xi,∆αi) = arg max
∆x,∆α

|〈I, BX̂+xi+∆x,s,αi+∆α〉|2.

3. Return the location X̂ , and (BX̂+xi+∆xi,s,αi+∆αi
, i = 1, ..., n), which is the translated and deformed

template.

Algorithm 6: Object Detection
Rotation and multi-resolution. We can rotate the template and scan the template over multiple resolu-

tions of the original image, to account for uncertainties about the orientation and scale of the object in the
testing image.

4.4.6 Active Appearance Models

In this sub-suction, we briefly review a method of interpreting images using an Active Appearance Model
(AAM) proposed in [34]. The first AAM model was actually introduced by Peter Hallinan at Harvard, it was
later written in a book [93]. An AAM contains a statistical model of the shape and grey-level appearance of
the object of interest which can generalise to almost any valid example. During a training phase we learn
the relationship between model parameter displacements and the residual errors induced between a training
image and a synthesised model example. To match to an image [34] measure the current residuals and use
the model to predict changes to the current parameters, leading to a better fit. A good overall match is
obtained in a few iterations, even from poor starting estimates. The AAM algorithm is an important method
for locating deformable objects in many applications. In AAM, the image difference patterns corresponding
to changes in each model parameter are learnt and used to modify a model estimate.

In a parallel development Sclaroff and Isidoro have demonstrated ’Active Blobs’ for tracking [216]. The
approach is broadly similar in that they use image differences to drive tracking, learning the relationship
between image error and parameter offset in an off-line processing stage. The main difference is that Active
Blobs are derived from a single example, whereas Active Appearance Models use a training set of examples.
The former use a single example as the original model template, allowing deformations consistent with low
energy mesh deformations (derived using a Finite Element method). A simply polynomial model is used to
allow changes in intensity across the object. AAMs learn what are valid shape and intensity variations from
their training set.

First, appearance models are generated follows the algorithms described in [56] but includes extra nor-
malisation and weighting steps. The models were generated by combining a model of shape variation with
a model of the appearance variations in a shape-normalised frame. We require a training set of labelled
images, where key landmark points are marked on each example object. For instance, to build a face model

97

we require face images marked with points at key positions to outline the main features.
Given such a set we can generate a statistical model of shape variation). The labelled points on a single

object describe the shape of that object. We align all the sets into a common co-ordinate frame and represent
each by a vector, x. We then apply a principal component analysis (PCA) to the data. Any example can
then be approximated using: x = x̄+ Psbs, where x̄ is the mean shape, Ps is a set of orthogonal modes of
variation and bs is a set of shape parameters.

To build a statistical model of the grey-level appearance we warp each example image so that its control
points match the mean shape (using a triangulation algorithm). We then sample the grey level information
gim from the shape-normalised image over the region covered by the mean shape. To minimise the effect
of global lighting variation, we normalise the example samples by applying a scaling, α, and offset, β,
g = (gm − β1)/α. The values of α and β are chosen to best match the vector to the normalised mean. Let
ḡ be the mean of the normalised data, scaled and offset so that the sum of elements is zero and the variance
of elements is unity. The values of β and α required to normalise gim are then given by α = gim · ḡ, β =
(gim · 1)/n, where n is the number of elements in the vectors.

Of course, obtaining the mean of the normalised data is then a recursive process, as the normalisation is
defined in terms of the mean. A stable solution can be found by using one of the examples as the first estimate
of the mean, aligning the others to it (using 2 and 3), re-estimating the mean and iterating. By applying PCA
to the normalised data we obtain a linear model: g = ḡ + Pgbg, where ḡ is the mean normalised grey-level
vector, Pg is a set of orthogonal modes of variation and bg is a set of grey-level parameters. The shape
and appearance of any example can thus be summarised by the vectors bs and bg. Since there may be
correlations between the shape and grey-level variations, we apply a further PCA to the data as follows. For
each example we generate the concatenated vector b = [Wsbs,bs]

T = [WsP
T
s (x − (̄x)),PT

g (g − ḡ)]T ,
where Ws is a diagonal matrix of weights for each shape parameter, allowing for the difference in units
between the shape and grey models. We apply a PCA on these vectors, giving a further model b = Qc,
where Q are the eigenvectors and c is a vector of appearance parameters controlling both the shape and
grey-levels of the model. Since the shape and grey-model parameters have zero mean, c does too. Note
that the linear nature of the model allows us to express the shape and grey-levels directly as functions of c,
x = x̄+ PsWsQsc,g = ḡ + PgQgc, where Q = [Qs,Qg]

T .
An example image can be synthesised for a given c by generating the shape-free grey-level image from

the vector g and warping it using the control points described by x.
We now address the central problem: We have an image to be interpreted, a full appearance model as

described above and a reasonable starting approximation. [34] propose a scheme for adjusting the model
parameters efficiently, so that a synthetic example is generated, which matches the new image as closely as
possible.

We wish to treat interpretation as an optimisation problem in which we minimise the difference between
a new image and one synthesised by the appearance model. A difference vector δI can be defined as
δI = Ii − Im, where Ii is the vector of grey-level values in the image, and Im, is the vector of grey-
level values for the current model parameters. To locate the best match between model and image, we
wish to minimise the magnitude of the difference vector, ∆ = |δI|2, by varying the model parameters,
c. Since the appearance models can have many parameters, this appears at first to be a difficult high-
dimensional optimisation problem. We note, however, that each attempt to match the model to a new image
is actually a similar optimisation problem. We propose to learn something about how to solve this class of
problems in advance. By providing a-priori knowledge of how to adjust the model parameters during during
image search, we arrive at an efficient runtime algorithm. In particular, the spatial pattern in δI, encodes
information about how the model parameters should be changed in order to achieve a better fit. In adopting
this approach there are two parts to the problem: learning the relationship between 6I and the error in the

98

model parameters, δc and using this knowledge in an iterative algorithm for minimising ∆.
The simplest model we could choose for the relationship between δI and the error in the model param-

eters (and thus the correction which needs to be made) is linear: δc = AδI. This turns out to be a good
enough approximation to achieve acceptable results. To find A, we perform multiple multivariate linear
regression on a sample of known model displacements, 6c, and the corresponding difference images, δI. We
can generate these sets of random displacements by perturbing the ’true’ model parameters for the images in
which they are known. These can either be the original training images or synthetic images generated with
the appearance model. In the latter case we know the parameters exactly, and the images are not corrupted
by noise.

As well as perturbations in the model parameters, we also model small displacements in 2D position,
scale, and orientation. These four extra parameters are included in the regression; for simplicity of notation,
they can be regarded simply as extra elements of the vector 5c. To retain linearity we represent the pose
using (sx, sy, tx, ty) where sx = scos(θ), sy = ssin(θ). In order to obtain a well-behaved relationship it is
important to choose carefully the frame of reference in which the image difference is calculated.

We calculate a difference thus: Let c0 be the known appearance model parameters for the current image.
We displace the parameters by a known amount, δc, to obtain new parameters c = δc + c0. For these
parameters we generate the shape, x, and normalised grey-levels, gin, using x = x̄ + PsWsQsc,g =
ḡ + PgQgc, where Q = [Qs,Qg]

T . We sample from the image, warped using the points, x, to obtain a
normalised sample g,. The sample error is then δg = g − gm.

The training algorithm is then simply to randomly displace the model parameter in each training image,
recording δc and δc. We then perform multi-variate regression to obtain the relationship δc = Aδg.

The best range of values of δc to use during training is determined experimentally. Ideally we seek to
model a relationship that holds over as large a range errors, 5g, as possible. However, the real relationship
is found to be linear only over a limited range of values. Our experiments on the face model suggest that the
optimum perturbation was around 0.5 standard deviations (over the training set) for each model parameter,
about 10% in scale and 2 pixels translation.

Given a method for predicting the correction which needs to made in the model parameters we can
construct an iterative method for solving our optimisation problem. Given the current estimate of model pa-
rameters, Co, and the normalised image sample at the current estimate, gs, one step of the iterative procedure
is as follows:

• Evaluate the error vector δg0 = gs − gm

• Evaluate the error E0 = |δg0|2

• Compute the predicted displacement, δc = Aδ

• Set k = 1

• Let c1 = c0 − kδc

• Sample the image at this new prediction, and calculate a new error vector δg1

• If |δg1|2 < E0 then accept the new estimate c1

• Otherwise try at k = 1.5, k = 0.5, k = 2.5, etc.

This procedure is repeated until no improvement is made to the error, |δg0|2, and convergence is de-
clared. [34] use a multi-resolution implementation, in which we iterate to convergence at each level before

99

Figure 4.14: Example faces with 68 landmarks from CelebA. The data set contains 1000 images from
CelebA, and they are cropped to 128× 128 pixels by the OpenFace, so that the background and hair are re-
moved. These faces have different colors, illuminations, identities, viewing angles, shapes, and expressions.

projecting the current solution to the next level of the model. This is more efficient and can converge to the
correct solution from further away than search at a single resolution.

The AAM combines modeling of image appearance and its variability with modeling of shape and its
variability. To model the image shape and its variability, the AAM needs pre-labeled landmark points, e.g.
Figure. 4.14, then the AAM is built by warping the training shapes to the average shape. Face warping
with sparse landmark points usually consists of three steps: (i) Find corresponding points. (e.g.) in our
dataset, there are 68 landmark points plus 4 corner points. (ii) Define a triangular mesh over the points.
The meshes of the source to target image are the same, and we have triangle-to-triangle correspondences.
A triangulation of set of points in the plane is a partition of the convex hull to triangles whose vertices are
the points, and do not contain other points. There are an exponential number of triangulations of a point set,
while the Delaunay triangulation is the "best". Given a set of points in a plane, a Voronoi diagram partitions
the space such that the boundary lines are equidistant from neighboring points. If you connect the points in
neighboring Voronoi regions, you get a Delaunay triangulation, e.g., Figure 4.15, (iii) Warp each triangle

Figure 4.15: Left: Sample face from CelebA with landmarks detected using OpenFace. Center: Delaunay
triangulation of the landmarks. Right : Corresponding Voronoi Diagram.

separately from source to target. First, pick a triangle in the source image and the corresponding triangle in

100

the target image and calculate the affine transform that maps the three corners of the triangle in the source
image to the three corners of the corresponding triangle in the target image. Then use the calculated affine
transform to transform all pixels inside the triangle to the target image. Repeat this for all triangles in the
source image to obtain a warped version of it.

In the context of compressing the face images and communicate through a network with small num-
ber of bits, AAM can reconstruct images effectively based on top K eigen-vectors for the warping (say
kg=10) and appearance (say ka=50). For the training images, we first align the images by warping their
landmarks into the mean position (interpolation between landmarks is needed), and then compute the eigen-
faces (appearance) from these aligned images. For each testing face: (i) project its landmarks to the top 10
eigen-warpings, we get the reconstructed landmarks, while losing a bit of geometric precision of reconstruc-
tion. (ii) warp the face image to the mean position and then project to the top k (say k=50) eigen-faces, we
get the reconstructed image at mean position, while further losing a bit of appearance accuracy. (iii) Warp
the reconstructed faces in step (ii) to the positions reconstructed in step (i). Each new image is constructed
from 60 numbers. Figure 4.17 demonstrates the reconstructed faces against the original testing images.

Figure 4.16: Left: the original first 100 testing faces. Center: the illumination channel of the first 100 aligned
test faces which warping the test faces to the mean position of landmarks. Right: The reconstruction faces
that warping the aligned test faces to their original position of landmarks. The data set contains 1000 images
from CelebA, with different colors, illuminations, identities, viewing angles, shapes, and expressions. We
divide the 1000 faces into two parts: the first 800 faces are put in a training set, and the remaining 200 faces
are put in a test set.

AAM can also synthesize random faces by a random sampling of the landmarks and a random sampling
of the appearance. Specifically, the eigen-faces and eigen-warpings for the landmarks can be seen as the
appearance basis functions and the geometric basis functions for the generated faces, while the correspond-
ing coefficients (latent vector) are computed by sampling from the eigen-axises, each axis has its own unit,
i.e., the square-root of its eigen-value. As we can observe from Figure 4.17, the appearance basis functions
usually captures the appearance information, such as illumination, color, and gender, while the geometric
basis functions usually captures the geometric information, such as viewing angles and shape.

101

4.5 The Sparse FRAME Model

The FRAME model is a Markov random field model [18,79]. Originated from statistical physics, the Markov
random field models or the Gibbs distributions are an important class of probability models for spatial
processes such as those observed in natural images. The log probability density function of a Markov random
field model is the sum of potential functions defined on the so-called cliques that consist of neighboring sites
or pixels. The potential functions can be high-dimensional for those cliques that consist of many pixels, and
it is difficult to learn such high-dimensional potential functions from the data. The FRAME model solves
this problem by recruiting a bank of linear filters, and parametrizes the potential functions as point-wise
one-dimensional non-linear transformations of linear filter responses. This model is the maximum entropy
distribution that reproduces the marginal statistics such as marginal histograms of the filter responses, where
for each filter, the marginal histogram is pooled over all the pixels in the image domain. The bank of filters
can be designed, such as Gabor filters or Gabor wavelets tuned to different locations, scales and orientations.
They can also be learned, together with the non-linear transformations, from the training data.

The FRAME model is originally developed for modeling spatially stationary processes such as stochastic
textures, where the potential functions are translation invariant. One generalization of the FRAME model is
a sparse FRAME model [258,260] where the potential functions are location specific, and they are non-zero
only at selected locations. This model is intended to model image patterns that are non-stationary in the
spatial domain, such as object patterns. The model can be written as a shared sparse coding model, where
the observed images are represented by a commonly shared set of wavelets selected from a dictionary. In
this shared sparse coding model, the original linear filters for bottom-up computation (from image to filter
responses) become linear basis functions for top-down representation (from coefficients to image).

4.5.1 Dense FRAME

We start from the non-stationary or spatially inhomogeneous FRAME model [253, 258, 260] based on a
dictionary of basis functions or wavelets {Bk,x,∀k, x} (we assume that the dictionary of wavelets, such as
the Gabor and DoG wavelets, has been given or has been learned by sparse component analysis [21,58,188]).
The model is a random field of the following form:

p(I;w) =
1

Z(w)
exp

[
K∑
k=1

∑
x∈D

wk,xh(〈I, Bk,x〉)
]
q(I). (4.18)

The above model is a simple generalization of FRAME model (11.3) , where 〈I, Bk,x〉 is the filter response,
which can also be written as [Fk ∗ I](x). The parameter wk,x depends on position x, so the model is non-
stationary. w = (wk,x, ∀k, x). Again Z(w) is the normalizing constant. h() is a pre-specified rectification
function. In [258] , h(r) = |r|, i.e., the model is insensitive to the signs of filter responses. q(I) is a reference
distribution, such as the Gaussian white noise model

q(I) =
1

(2πσ2)D/2
exp

[
− 1

2σ2
||I||2

]
, (4.19)

where again D counts the number of pixels in the image domain D.

4.5.2 Sparse representation

Assume we are given a dictionary of wavelets or basis functions {Bk,x}, where k may index a finite col-
lection of prototype functions {Bk, k = 1, ...,K}, and where Bk,x is a spatially translated copy of Bk to

102

position x. We can represent an image I by

I =
∑
k,x

ck,xBk,x + ε, (4.20)

where ck,x are the coefficients, and ε is the residual image. It is often assumed that the representation is
sparse, i.e., most of the ck,x are equal to zero. The resulting representation is also called sparse coding
[59, 188].

The sparsification of ck,x, i.e., the selection of the basis functions, can be accomplished by matching
pursuit [164] or basis pursuit/Lasso [28, 232]. Using a Lasso-like objective function, the dictionary of basis
functions {Bk} can be learned from a collection of training images [58, 188]. It is sometimes called sparse
component analysis [54]. It can be considered a generalization of factor analysis. For natural images, the
basis functions learned resemble the Gabor and DoG wavelets in Figure 12.8.

4.5.3 Maximum likelihood learning

The basic learning algorithm estimates the parameters w = (wk,x,∀k, x) from a set of aligned training
images {Ii, i = 1, ..., n} that come from the same category, where n is the total number of training images.
The algorithm can be extended to learn from non-aligned images from mixed categories. The basic learning
algorithm seeks to maximize the log-likelihood

L(w) =
1

n

n∑
i=1

log p(Ii;w), (4.21)

whose partial derivatives are

∂L(w)

∂wk,x
=

1

n

n∑
i=1

h(〈Ii, Bk,x〉)− Ew [h(〈I, Bk,x〉)] , (4.22)

where Ew denotes expectation with respect to p(I;w) in (4.18). This expectation can be approximated by
Monte Carlo integration. Thus, w can be computed by the stochastic gradient ascent algorithm [202, 267]

w
(t+1)
k,x = w

(t)
k,x + γt

[
1

n

n∑
i=1

h(〈Ii, Bk,x〉)−
1

ñ

ñ∑
i=1

h(〈Ĩi, Bk,x〉)
]
, (4.23)

where γt is the step size or the learning rate, and {Ĩi, i = 1, ..., ñ} are the synthetic images sampled from
p(I;w(t)) using MCMC, such as Hamiltonian Monte Carlo [180] or the Gibbs sampler [78]. ñ is the total
number of independent parallel Markov chains that sample from p(I;w(t)).

4.5.4 Generative boosting

Model (4.18) is a dense model in that all the wavelets (or filters) in the dictionary are included in the model.
We can sparsify the model by forcing most of the wk,x to be zero, so that only a small number of wavelets
are included in the model. This can be achieved by a generative version [260] of the epsilon-boosting
algorithm [70,73] (see also [44,65,249,254]). The algorithm starts from w = 0, the zero vector. At the t-th
iteration, let

∆k,x =
1

n

n∑
i=1

h(〈Ii, Bk,x〉)−
1

ñ

ñ∑
i=1

h(〈Ĩi, Bk,x〉) (4.24)

103

be the Monte Carlo estimate of ∂L(w)/∂wk,x, where again {Ĩi, i = 1, ..., ñ} are the synthetic images
sampled from the current model. We select

(k̂, x̂) = arg max
k,x
|∆k,x|, (4.25)

and update wk̂,x̂ by

wk̂,x̂ ← wk̂,x̂ + γt∆k̂,x̂, (4.26)

where γt is the step size, assumed to be sufficiently small (thus the term “epsilon” in the epsilon-boosting
algorithm). We call this algorithm generative epsilon boosting because the derivatives are estimated by
images generated from the current model. See Figure 4.18 for an illustration.

The selected wavelet Bk̂,x̂ reveals the dimension along which the current model is most conspicuously
lacking in reproducing the statistical properties of the training images. By including Bk̂,x̂ into the model
and updating the corresponding parameter wk̂,x̂, the model receives the most needed boost. The process is
like an artist making a painting, where Bk̂,x̂ is the stroke that is most needed to make the painting look more
similar to the observed objects.

The epsilon boosting algorithm [73, 97] has an interesting relationship with the `1 regularization in
the Lasso [232] and basis pursuit [28]. As pointed out by [203], under a monotonicity condition (e.g.,
the components of w keep increasing), such an algorithm approximately traces the solution path of the `1
regularized minimization of

−L(w) + ρ‖w‖`1 , (4.27)

where the regularization parameter ρ starts from a big value so that all the components of w are zero, and
gradually lowers itself to allow more components to be non-zero so that more wavelets are induced into the
model.

4.5.5 Sparse model

After selecting m wavelets, we have the following sparse FRAME model:

p(I; B, w) =
1

Z(w)
exp

 m∑
j=1

wjh(〈I, Bkj ,xj 〉)

 q(I), (4.28)

where B = (Bj = Bkj ,xj , j = 1, ...,m) is the set of wavelets selected from the dictionary, andwj = wkj ,xj .
In model (4.28), m is much smaller than D, the number of pixels. Thus, we can represent I by

I =
m∑
j=1

cjBkj ,xj + ε, (4.29)

where C = (cj , j = 1, ...,m)> are the least square regression coefficients of I on B = (Bj , j = 1, ...,m),
i.e., C = (B>B)−1B>I, and ε is the residual image. The distribution of C under p(I; B, w) is

pC(C;w) =
1

Z(w)
exp

[
〈w, h(B>BC)〉

]
qC(C), (4.30)

where qC(C) is the distribution of C under q(I), and the transformation h() is applied element-wise. Thus,
p(I;B,w) in (4.28) can be written as a wavelet sparse coding model (4.29) and (4.30). The forms of

104

(4.28) and (4.29) show that the selected wavelets {Bj} serve both as filters and basis functions. The sparse
coding form of the model (4.29) and (4.30) is used for sampling {Ĩi} from p(I; B, w) by first sampling
C ∼ pC(C;w) using the Gibbs sampler [78], and then generating Ĩi according to (4.29).

Model (4.29) suggests that we can also select the wavelets by minimizing

n∑
i=1

‖Ii −
m∑
j=1

ci,jBkj ,xj‖2, (4.31)

using a shared matching pursuit method [258]. See Figure 4.19 for an illustration. We can also allow the
selected wavelets to perturb their locations and orientations to account for deformations [253].

The sparse FRAME model can be used for unsupervised learning tasks such as model-based clustering
[63]. Extending the learning algorithm, one can learn a codebook of multiple sparse FRAME models from
non-aligned images. The learned models can be used for tasks such as transfer learning [106, 258].

The sparse FRAME model merges two important research themes in image representation and modeling,
namely, Markov random fields [18, 79] and wavelet sparse coding [58, 188].

The wavelets can be mapped to the first layer filters of a ConvNet [141] to be described below. The
sparse FRAME models can be mapped to the second layer nodes of a ConvNet, except that the sparse
FRAME versions of the second layer nodes are selectively and sparsely connected to the first layer nodes.

4.6 Compositional Sparse Coding

4.6.1 Sparsity and Composition

The goal of this section is to develop a compositional sparse code for natural images. Figure 4.20 illustrates
the basic idea. We start with a dictionary of Gabor wavelets centered at a dense collection of locations
and tuned to a collection of scales and orientations. In Figure 4.20, each Gabor wavelet is illustrated by
a bar at the same location and with the same length and orientation as the corresponding wavelet. Figure
4.20.(a) displays the training image. (b) displays a mini-dictionary of 2 compositional patterns of wavelets
learned from the training image. Each compositional pattern is a template formed by a group of a small
number of wavelets at selected locations and orientations. The learning is unsupervised in the sense that the
images are not labeled or annotated. The number of templates in the dictionary is automatically determined
by an adjusted Bayesian information criterion. The 2 templates are displayed in different colors, so that it
can be seen clearly how the translated, rotated, scaled and deformed copies of the 2 templates are used to
represent the training image, as shown in (b). In (c), the templates are overlaid on the original image, where
each green squared box is the bounding box of the template. In our current implementation, we allow some
overlap between the bounding boxes of the templates. The templates learned from the training image can be
generalized to testing images, as shown in (d) and (e).

Figure 4.21 shows another example, where part templates of egrets and templates of water waves and
grasses are learned from 20 training images without supervision. That is, the training images are not reg-
istered, in that we do not assume that the objects in the training images appear at the same location and
scale. It is interesting to observe that in this example, the unsupervised learning also accomplishes image
segmentation, object detection and perceptual grouping (e.g., grass pattern), which are important tasks in
vision.

Our compositional sparse code combines two fundamental principles in image representation and com-
putational vision, namely, sparsity and compositionality. We shall briefly review these two principles below
and then give an overview of our methodology.

105

The compositionality principle was proposed in the context of computer vision by Geman, Potter, and
Chi (1998) and Zhu and Mumford (2007). The principle holds that patterns in natural images are compo-
sitions of parts, which are in turn compositions of sub-parts, and so on. An interesting example cited by
Geman et al. is Laplace’s remark that one strongly prefers to view the string CONSTANTINOPLE as a
single word, rather than 14 individual letters. This is also the case with the basis functions in the sparse
coding of natural images. Like letters forming the words, the basis functions in the sparse representations
of natural images also form various compositional patterns in terms of their spatial arrangements. We call
such sparsity the compositional sparsity, which is a special form of structured sparsity.

Structured sparsity has received considerable attention in statistics and machine learning in recent years.
The most prominent example is the group Lasso, which replaces the `1 penalty of Lasso by a composite
penalty based on the group structure among the basis functions. In the group Lasso, the collection of the
groups is assumed given. In our work, however, we do not assume that the groups are given, and we seek to
learn dictionaries of the recurring compositional patterns in the spatial grouping of the basis functions.

Any hierarchical compositional model will necessarily end with constituent elements that cannot be fur-
ther decomposed, and such elements may be called “atoms.” Interestingly, the basis functions are commonly
referred to as atoms in sparse coding literature, and the sparse representation based on atoms is usually called
“atomic decomposition” . Compositionality enables us to compose atoms into composite representational
units, which leads to much sparser and thus more meaningful representations of the signals.

The current form of our model consists of two layers of representational units: basis functions and shape
templates. It is possible to extend it to multiple layers of hierarchy.

4.6.2 Compositional sparse coding model

We strive to write down our model in an analogous form as the Olshausen-Field model Im =
∑n

i=1 cm,iBxm,i,sm,i,αm,i+
Um, by making the notation compact.

Compact notation. As the first step, let us slightly generalize the active basis model by assuming that
the template may appear at location Xm in image Im, then we can write the representation in the following
form:

Im =
n∑
i=1

cm,iBXm+xi+∆xm,i,s,αi+∆αm,i + Um

= CmBXm + Um, (4.32)

where BXm = (BXm+xi+∆xm,i,s,αi+∆αm,i , i = 1, ..., n) is the deformed template spatially translated to
Xm, Cm = (cm,i, i = 1, ..., n), and CmBXm =

∑n
i=1 cm,iBXm+xi+∆xm,i,s,αi+∆αm,i by definition.

BXm explains the part of Im that is covered by BXm . For each image Im and each Xm, we can define
the log-likelihood ratio similar to (4.17):

l(Im | BXm) = log
p(Im | BXm)

q(Im)

=

n∑
i=1

[
λi max

∆x,∆α
h(|〈Im, BXm+xi+∆x,s,αi+∆α〉|2)− logZ(λi)

]
. (4.33)

As the next step of this modeling procedure, in addition to spatial translation and deformation, we can
also rotate and scale the template. So a more general version of (4.32) is

Im = CmBXm,Sm,Am + Um, (4.34)

106

where Xm is the location, Sm is the scale, and Am is the orientation of the translated, rotated, scaled and
deformed template. The scaling of the template is implemented by changing the resolution of the original
image. We adopt the convention that whenever the notation B appears in image representation, it always
means the deformed template, where the perturbations of the basis functions can be inferred by local max
pooling. The log-likelihood ratio l(Im | BXm,Sm,Am) can be similarly defined as in (4.33). Figure 4.22
illustrates the basic idea of representation (4.34). In addition to spatial translation, dilation and rotation of
the template, we may also allow mirror reflection as well as the change of aspect ratio.

Compact representation. Now suppose we have a dictionary of T active basis templates, {B(t), t =
1, ..., T}, where each B(t) is a compositional pattern of basis functions. Then we can represent the image
Im byKm templates that are spatially translated, rotated, scaled and deformed versions of these T templates
in the dictionary:

Im =

Km∑
k=1

Cm,kB
(tm,k)
Xm,k,Sm,k,Am,k

+ Um, (4.35)

where each B
(tm,k)
Xm,k,Sm,k,Am,k

is obtained by translating the template of type tm,k, i.e., B(tm,k), to location
Xm,k, scaling it to scale Sm,k, rotating it to orientation Am,k, and deforming it to match Im. Note that
according to (4.35), the images represented by the dictionary are no longer assumed to be aligned.

If the Km templates do not overlap with each other, then the log-likelihood ratio is

M∑
m=1

Km∑
k=1

[
l(Im | B(tm,k)

Xm,k,Sm,k,Am,k
)
]
. (4.36)

Packing and unpacking. The above representation is in analogy to model (4.9) in subsection (4.4.1),
which we copy here: Im =

∑n
i=1 cm,iBxm,i,sm,i,αm,i +Um. The difference is that each B

(tm,k)
Xm,k,Sm,k,Am,k

is a
composite representational unit, which is itself a group of basis functions that follow a certain compositional
pattern of type tm,k. Because of such grouping or packing, the number of templates Km needed to encode
Im is expected to be much smaller than the total number of basis functions needed to represent Im, thus
resulting in sparser representation. Specifically, if each template is a group of g basis functions, then the
number of basis functions in the representation (4.35) is Kmg. In fact, we can unpack model (4.35) into the
representation (4.9). The reason that it is advantageous to pack the basis functions into groups is that these
groups exhibit T types of frequently occurring spatial grouping patterns, so that when we encode the image
Im, for each selected group B

(tm,k)
Xm,k,Sm,k,Am,k

, we only need to code the overall location, scale, orientation
and type of the group, instead of the locations, scales and orientations of the individual constituent basis
functions.

Limited overlap assumption. It is desirable to allow some limited overlap between the bounding boxes
of the Km templates that encode Im. Even if the bounding boxes of two templates have some overlap with
each other, their constituent basis functions may not overlap much. If we do not allow any overlap between
the bounding boxes of the templates, some salient structures of Im may fall through the cracks between the
templates. Also, it is possible that the frequently occurring patterns may actually overlap with each other.
For instance, in a string “ABABABA”, the pattern “AB” is frequently occurring, but at the same time, the
pattern “BA” is as frequent as “AB”, and these two patterns overlap with each other. So it can be desirable
to allow some overlap between the patterns in order to recover all the important recurring patterns. On
the other hand, we do not want to allow excessive overlap between the templates. Otherwise the learned
templates will be too redundant, and we will need a lot of them in order to describe the training images. In
practice, we assume the following limited overlap constraint: For each template B

(tm,k)
Xm,k,Sm,k,Am,k

centered

107

at Xm,k, let D be the side length of its squared bounding box, then no other templates are allowed to be
centered within a distance of ρD from Xm,k (default setting: ρ = .4).

Such an assumption naturally leads to an inhibition step when we use a dictionary of templates to encode
a training or testing image. Specifically, when a template is chosen to encode an image, this template will
prevent overlapping templates from being selected. The template matching pursuit algorithm to be described
below adopts such an inhibition scheme.

The following are the details of the two steps.
Step (I): Image encoding by template matching pursuit. Suppose we are given the current dictionary

{B(t), t = 1, ..., T}. Then for each Im, the template matching pursuit process seeks to represent Im by
sequentially selecting a small number of templates from the dictionary. Each selection seeks to maximally
increase the penalized log-likelihood ratio (??).

[I.0] Initialize the maps of template matching scores for all (X,S,A, t):

R(t)
m (X,S,A)← l(Im | B(t)

X,S,A)− n(t)γ,

where n(t) is the number of basis functions in the t-th template in the dictionary and γ is a constant con-
trolling model complexity as explained above. This can be accomplished by first rotating the template
B(t) to orientation A, and then scanning the rotated template over the image zoomed to the resolution that
corresponds to scale S. The larger the S is, the smaller the resolution is. Initialize k ← 1.

[I.1] Select the translated, rotated, scaled and deformed template by finding the global maximum of the
response maps:

(Xm,k, Sm,k, Am,k, tm,k) = arg max
X,S,A,t

R(t)
m (X,S,A).

[I.2] Let the selected arg-max template inhibit overlapping candidate templates to enforce limited over-
lap constraint. Let D be the side length of the bounding box of the selected template B

(tm,k)
Xm,k,Sm,k,Am,k

, then

for all (X,S,A, t), if X is within a distance ρD from Xm,k, then set the response R
(t)
m (X,S,A) ← −∞

(default setting: ρ = .4).
[I.3] Stop if all R

(t)
m (X,S,A, t) < 0. Otherwise let k ← k + 1, and go to [I.1].

The template matching pursuit algorithm implements a hard inhibition to enforce the limited overlap
constraint. In a more rigorous implementation, we may update the residual image by Um ← Um −
CmB

(tm,k)
Xm,k,Sm,k,Am,k

as in the original version of matching pursuit. But the current simplified version is
more efficient.

Step (II): Dictionary re-learning by shared matching pursuit. For each t = 1, ..., T , we re-learn B(t)

from all the image patches that are currently covered by B(t). Each iteration of the shared matching pursuit
process seeks to maximally increase the penalized log-likelihood ratio (??), given the current encoding
(tm,k, Xm,k, Sm,k, Am,k, k = 1, ...,Km).

[II.0] Image patch cropping. For each Im, go through all the selected templates {B(tm,k)
Xm,k,Sm,k,Am,k

,∀k}
that encode Im. If tm,k = t, then crop the image patch of Im (at the resolution that corresponds to Sm,k)

covered by the bounding box of the template B
(tm,k)
Xm,k,Sm,k,Am,k

.

[II.1] Template re-learning. Re-learn template B(t) from all the image patches covered by B(t) that are
cropped in [II.0], with their bounding boxes aligned. The learning is accomplished by the shared matching
pursuit algorithm of subsection (4.4.5).

This dictionary re-learning step re-learns each compositional pattern from the re-aligned raw image
patches, where the sparse representations and the correspondences between the selected basis functions are
obtained simultaneously by the shared matching pursuit algorithm, thus avoiding the difficulty faced by the
sparsify-and-then-compose procedure of Strategy I.

108

Random initialization and polarization. As mentioned above, the learning algorithm is initialized by
learning from image patches randomly cropped from the training images. As a result, the initially learned
templates are rather meaningless, but meaningful templates emerge very quickly after a few iterations.

During the template matching pursuit process of the first iteration, we continue to select templates even
if the template matching scores are below zero. In the first iteration, we stop the template matching pursuit
process for each Im when all the candidate templates are inhibited on Im. That is because the initial tem-
plates in the dictionary are rather random, so we force them to explain the whole image of Im even if the
initial templates do not match the image well.

In the beginning, the differences among the initial templates are small. However, as the algorithm
proceeds, the small differences among the initial templates trigger a polarizing or specializing process, so
that the templates become more and more different, and they specialize in encoding different types of image
patches.

4.7 Bottom-up filters or top-down basis functions?

In the FRAME model, the Gabor wavelets serve as bottom-up filters to extract features. In the texton model
or active basis model, the Gabor wavelets serve as top-down basis functions. It is still not entirely clear how
to reconcile the two roles.

In terms of modeling and computing, the FRAME model based on bottom-up filters require MCMC such
as Langevin dynamics to sample from it. The texton model or the active basis model based on top-down
basis functions requires inference process to select and infer the coefficients of the basis functions.

For simplicity, we have assumed that the Gabor wavelets are pre-designed. They can also be learned
from training data.

109

Figure 4.17: Top: Typical appearance basis functions, which is generated by setting the eigen-axises for the
eigen-warpings of the landmarks to zero, and each time vary one dimension of the eigen-axises of the eigen-
appearance-faces from [−γ× std, γ× std] with a uniform step 2γ×std

10 , while holding the other eigen-axises
of the eigen-appearance-faces at zero. Middle: Typical basis functions for the landmarks. Each row contains
generated landmarks by sampling the eigen-value over one eigen-axis for the eigen-warpings, while keeping
the coefficients over the other eigen-axises to be zeros. Down: Typical geometric basis functions, which is
generated by warping the face of one people through the geometric basis of the landmarks from the Middle
row.

110

(a) training images

(b) synthetic images

(c) sketch templates

(d) more synthetic images

Figure 4.18: Learning process of the generative boosting. (a) observed training images (100 × 100 pixels)
from which the random field model is learned. (b) a sequence of synthetic images generated by the learned
model as more and more wavelets are induced into the model. The numbers of the selected wavelets are
1, 20, 65, 100, 200, 500, and 800 respectively. (c) a sequence of sketch templates that illustrate the wavelets
selected from the given dictionary. The dictionary includes 4 scales of Gabor wavelets, illustrated by bars
of different sizes, and 2 scales of Difference of Gaussian (DoG) wavelets, illustrated by circles. In each
template, smaller scale wavelets appear darker than larger ones. (d) more synthetic images independently
generated from the final learned model.

(a) sketch templates

(b) reconstructed images

Figure 4.19: Shared matching pursuit for the purpose of wavelet selection. (a) sequence of sketch templates
that illustrate the wavelets selected sequentially in order to reconstruct all the training images simultane-
ously. The selected wavelets are shared by all the training images (100 × 100) in their reconstructions.
The numbers of selected wavelets in the sequence are 2, 20, 60, 100, 200, 500, and 800 respectively. (b)
sequences of reconstructed images by the selected wavelets for the 1st and 3rd training images in Figure
4.18(a).

111

Figure 4.20: Unsupervised learning of compositional sparse code (a,b,c) and using it for recognition and
segmentation (d,e). (a) Training image of 480 × 768 pixels. (b) Above: 2 compositional patterns (twig and
leaf) in the form of shape templates learned from the training image. Each constituent Gabor wavelet (basis
function) of a template is illustrated by a bar at the same location and with the same orientation and length
as the corresponding wavelet. The size of each template is 100 × 100 pixels. The number of basis functions
in each template is no more than 40 and is automatically determined. Below: Representing the training
image by translated, rotated, scaled and deformed copies of the 2 templates. (c) Superposing the deformed
templates on the original image. The green squared boxes are the bounding boxes of the templates. (d)
Testing image. (e) Representation (recognition) of the testing image by the 2 templates.

Figure 4.21: Four compositional patterns (templates) are learned from 20 training images (only 6 of them
are shown in this figure). The training images are not registered or otherwise annotated. The size of each
template is 100 × 100 pixels. The number of basis functions in each template is no more than 40 and is
automatically determined.

112

Figure 4.22: Objects appear at different locations, scales and orientations in the training images. In each
row, the first plot displays the nominal active basis template. The rest of the row displays some examples of
training images and the suppositions of the spatially translated, scaled, rotated and deformed versions of the
nominal template.

113

5

Gestalt Laws and Perceptual Organization

5.1 Gestalt Laws for Perceptual Organization

The word Gestalt, as used in Gestalt Psychology is often understood as “pattern”. The school of Gestaltism,
emerged in Austria and Germany in the early twentieth century, focuses on the study on how organisms
perceive entire patterns or configurations from an image, rather than just individual components. As is
commonly cited, “the whole is more than the sum of its parts” best describes the idea of Gestaltism.

Many people share the experience that when we look at the world, we tend to decompose complex
scenes into groups of objects against a background, and perceive the objects as a composition of parts, and
sometimes even those parts have sub-parts. But what actually enables us to do this? Does that surprise
you that we manages to do such a remarkable achievement when what we see is, to some extend, just
a distribution of colored points? The Gestalt Psychology believes that we are able to do it because our
vision system favors a set of principles when we understand the world. The set of principles are latter
formulated based on regularities based on wholes, sub-wholes, groups, or Gestalten, and called Gestalt
laws. Gestalt laws, proximity, similarity, figure-ground, continuity, closure, and connection, determine how
humans perceive visuals in connection with different objects and environments.

Specifically, Gestalt laws include the following:

• Law of Similarity: The law of similarity suggests that similar things tend to show up together. The
grouping can occur in various modalities, including visual and auditory stimuli.

• Law of Pragnanz: “Pragnanz” in German means “good figure”. Therefore, this law is sometimes
referred to as the law of good figure or the law of simplicity. It states that we perceive figures in the
simplest way possible, say a composition of simple shapes.

• Law of Proximity: The law of proximity suggests that when we perceive an image, closer objects tend
to be grouped together. This law could could be particularly helpful when we describe a set of objects
and explain how we separate them into several smaller groups.

• Law of Continuity: We often have the impression that points connected by lines or curves form a
smooth path together instead of segmented lines and angles. The Gestaltism explains this phenomenon
using the law of continuity.

• Law of Closure: If things, when grouped as a whole, would become a simple entity, we usually ignore
contradictorary evidence and choose to fill in the missing pieces to treat it as a group. This law of
closure helps us understand segmented arcs of a circle to be a whole.

115

• Law of Common Region: According to this law, elements in the same region of space tend to be
grouped together.

Gestalt laws provide a way for us to understand some important perception heuristics and psychological
research continues to offer insights into it. But from a modeling point of view, despite long standing obser-
vations in the psychology literature, there was no explicit mathematical models that can account for these
Gestalt laws and weight them properly when multiple laws are working together or in competition.

5.2 Texton Process Embedding Gestalt Laws

In this section, we discuss a way to model visual patterns based on Gestalt laws by integrating descriptive
and generative methods.

In particular, we present a mathematical framework for visual learning that integrates two popular sta-
tistical learning paradigms in the literature:

1. Descriptive methods, such as Markov random fields and minimax entropy learning [274]

2. Generative methods, such as principal component analysis, independent component analysis [13], and
transformed component analysis [66], wavelet coding [27, 162], and sparse coding [150, 186].

The integrated framework creates richer classes of probabilistic models for visual patterns. In this paper,
we demonstrate the integrated framework by learning a class of hierarchical models for texton patterns (the
term of textons was coined by psychologist Julesz in the early 80s). At the bottom level of the model, we
assume that an observed texture image is generated by multiple hidden “texton maps”, and textons on each
map are translated, scaled, and oriented versions of a window function, like mini-templates or wavelet bases.
The texton maps generate the observed image by occlusion or linear superposition. This bottom level of the
model is generative in nature. At the top level of the model, the spatial arrangements or global organizations
of the textons in the texton maps are characterized by minimax entropy principle, which leads to embellished
versions of Gibbs point process models [30]. The top level of the model is descriptive in nature.

The learning framework achieves four goals:

1. Computing the window functions (or appearances) of different types of textons.

2. Inferring the hidden texton maps that generate the image.

3. Learning Gibbs point process models for the texton maps.

4. Verifying the learned window functions and Gibbs models through texture synthesis by stochastic
sampling.

We use a stochastic gradient algorithm for inferential computation. We demonstrate the learning framework
by a set of experiments.

5.2.1 Introduction

What a vision algorithm can accomplish depends crucially upon how much it “understands” the contents
of the observed images. Thus in computer vision and especially Bayesian image analysis, an important
research theme is visual learning whose objective is to construct parsimonious and general models that can
realistically characterize visual patterns in natural scenes. Due to the stochastic nature of visual patterns,
visual learning is posed as a statistical modeling and inference problem, and existing methods in the literature

116

can be generally divided into two categories. In this paper, we call one category the descriptive methods and
the other category the generative methods.*

Descriptive methods model a visual pattern by imposing statistical constraints on features extracted from
signals. Descriptive methods include Markov random fields, minimax entropy learning [274], deformable
models, etc. For example, recent methods on texture modeling all fall into this category [19, 99, 195, 274].
These models are built on pixel intensities or some deterministic transforms of the original signals, such
as linear filtering. The shortcomings of descriptive methods are two-fold. First, they do not capture high
level semantics in visual patterns, which are often very important in human perception. For example, a
descriptive model of texture can realize a cheetah skin pattern with impressive synthesis results but it does
not have explicit notion of individual blobs. Second, as descriptive models are built directly on the original
signals, the resulting probability densities are often of very high dimensions and the sampling and inference
are computationally expensive. It is desirable to have dimension reduction so that the models can be built in
a low dimensional space that often better reflects the intrinsic complexity of the pattern.

In contrast to descriptive methods, generative methods postulate hidden variables as the causes for the
complicated dependencies in raw signals, and thus the models are hierarchical in nature. Generative meth-
ods are widely used in vision and image analysis. For example, principle component analysis (PCA), in-
dependent component analysis (ICA) [13], transformed component analysis (TCA) [66], wavelet image
representation [27, 162], sparse coding [150, 186], and the random collage model for generic natural im-
ages [143]. Despite their simplicity, these generative models suffer from an over-simplified assumption that
hidden variables are independent and identically distributed (iid).† As a result, they are not sophisticated
enough to generate realistic visual patterns. For example, a wavelet image coding model can easily recon-
struct an observed image, but it cannot synthesize a texture pattern through iid random sampling because
the spatial relationships between the wavelet coefficients are not characterized.

The two learning paradigms were developed almost independently by somewhat disjoint communities
working on different problems, and their relationship has yet to be studied. In this paper, we present a visual
learning framework that integrates both descriptive and generative methods and extends them to a richer
class of probabilistic models for computer vision.

The integrated learning framework makes contributions to visual learning in the following four aspects.

Figure 5.1: Two examples of natural patterns.

First, it combines the advantages of both descriptive and generative methods, and provides a general
visual learning framework for modeling complex visual patterns. In computer vision, a fundamental ob-

*There is a third category of methods which are discriminative. The goal of discriminative methods is not for modeling visual
patterns explicitly but for classification. For example, pattern recognition, feed-forward neural networks and classification trees etc.
Thus we choose not to discuss it because our focus is statistical modeling.

†Interested readers are referred to a recent paper [206] for discussion of the problem with existing generative models.

117

servation, stated in Marr’s primal sketch paradigm [165], is that natural visual patterns consist of multiple
layers of stochastic processes. For example, Fig. 5.1 displays two natural images. When we look at the ivy-
wall image, we perceive not only the texture “impression” in terms of pixel intensities, but we also see the
repeated elements in the ivy and bricks. To capture the hierarchical notion, we propose a multi-layer gener-
ative model as shown in Fig 5.2. We assume that a texture image is generated by a few layers of stochastic
processes and each layer consists of a finite number of distinct but similar elements, called “textons” (fol-
lowing the terminology of Julesz). In experiments, each texton covers more than 100 pixels on average, so
the layered representation achieves a nearly 100-fold dimension reduction.‡ The spatial arrangements of the
textons at each layer are characterized by Markov random field (MRF) models through the minimax entropy
learning [274], and previous MRF texture models can be considered special cases where the models have
only one layer and each “texton” is just a pixel.

ψ (T ;)1 1I
ψ2

T 2

(T ;)I ψ
2 2

ψ1

T 1

. . ..
.
.

.
..

.
..

.
..

.

.
.

.
.

.
... ..

.
. .

.. .
. .

. . .
.

..
.. . .

..
..

n
+

I

Figure 5.2: A generative model for an image I consists of multiple layers of texton maps I(Tl; Ψl), l =
1, ..., L superimposed with occlusion plus an additive noise image n.

It is our belief that descriptive models are precursors of generative models and both are ingredients of
the integrated learning process. In visual learning, the model can be initially built on image intensities via
some features computed deterministically from the image intensities. Then we can replace the features by
hidden causes, and such a process would incrementally discovers more abstract elements or concepts such as
textons, curves, flows, and so on, where elements at the more abstract levels become causes for the elements
of lower abstractions. For instance, the flows generate curves, and the curves generate textons, which in
turn generate pixel intensities. At each stage, the elements at the most abstract level have no further hidden
causes and thus they have to be characterized by a descriptive model based on some deterministic features,
and such models can be derived by the minimax entropy principle as demonstrated in [252]. When a new
hidden level of elements is introduced, it replaces the current descriptive model by a simplified one. The
learning process evolves until the descriptive model for the most abstract elements becomes simple enough
for a certain vision purpose. By analogy, the learning process is very similar to the situation in physics,
where experimental observations are explained by a hierarchy of elements (say from quarks, electrons,
atoms, to molecules) and their interactions.

Second, the integrated learning framework provides a representational definition of “textons”. Texton
has been an important notion in texture perception and early vision. Unfortunately, it was only expressed
vaguely in psychology [123], and a precise definition of texton has yet to be found. In this paper, we
argue that the definition of “texton” is possible only in the context of a generative model. In contrast to the
constraint based clustering method by Malik, Leung etc. [148, 149, 159], in this paper, textons are naturally

‡A texton has to be described by a few variables for location, scale, orientation etc.

118

embedded in a generative model and are inferred as hidden variables of the generative model. This is
consistent with the philosophy of ICA [66], TCA [66] and sparse coding [150, 186].

Third, we present a Gestalt ensemble to characterize the hidden texton maps as attributed point pro-
cesses. The Gestalt ensemble corresponds to the grand canonical ensemble in statistical physics [24], and
it differs from traditional Gibbs models by having an unknown number of textons whose neighborhood
changes dynamically. The relationships between neighboring textons are captured by some Gestalt laws,
such as proximity and continuity etc.

Fourth, we adapt a stochastic gradient algorithm [89] for effective learning and inference, in contrast to
the conventional EM algorithm [45]. In the adapted algorithm, we simplify the original likelihood function
and solves the simplified maximum likelihood problem first. Starting from the initial solution, we then use
the stochastic gradient algorithm to find refined solutions.

We demonstrate the proposed learning method on texture images. For an input texture image, the learn-
ing algorithm achieves the following four objectives.

1. Learning the appearance of textons for each stochastic process. Textons of the same stochastic process
are translated, scaled, and oriented versions of a window function, like mini-templates or wavelet
bases.

2. Inferring the hidden texton maps, each of which consists of an unknown number of similar textons
which are related to each other by affine transformations.

3. Learning the minimax entropy models for the stochastic processes that generate the textons maps.

4. Verifying the learned window functions and generative models through stochastic sampling.

It is worth noting that this is not another paper on texture synthesis, which is a computer graphics prob-
lem that has been successfully solved by a variety of texture sampling techniques [19, 99, 195, 274]. Instead
this paper is about learning parsimonious and sufficient models for vision tasks, where texture synthesis
only serves as a method for model checking.

The paper is organized as follows. Section (5.2.2) introduces the background on both generative and
descriptive learning methods. Section (5.2.3) discusses a hierarchical model for texture. Section (5.2.4)
studies Gestalt ensembles for modeling texton processes. Then section (5.2.5) presents an integrated learning
method. Section (8.2.3) presents the algorithm for inferential computation. Some experiments are shown in
Section (5.2.7). We conclude the paper with a critical discussion in section (5.2.8).

5.2.2 Background on Descriptive and Generative Learning

Given a set of images I = {Iobs
1 , ..., Iobs

M }, where Iobs
m ,m = 1, ...,M are considered realizations of some

underlying stochastic process governed by a frequency f(I). The objective of visual learning is to estimate
a probabilistic model p(I) based on I so that p(I) approaches f(I) by minimizing a Kullback-Leibler
divergence KL(f ||p) from f to p [37],

KL(f ||p) =

∫
f(I) log

f(I)

p(I)
dI = Ef [log f(I)]− Ef [log p(I)]. (5.1)

In practice, the expectation Ef [log p(I)] is replaced by a sample average. Thus we have the standard maxi-
mum likelihood estimator (MLE),

p∗ = arg min
p∈Ωp

KL(f ||p) ≈ arg max
p∈Ωp

M∑
m=1

log p(Iobs
m), (5.2)

119

where Ωp is the family of distributions where p∗ is searched for. One general procedure is to search for p in
a sequence of nested probability families,

Ω0 ⊂ Ω1 ⊂ · · · ⊂ ΩK → Ωf 3 f,

where K indexes the dimensionality of the space. For example, K could be the number of free parameters
in a model. As K increases, the probability family should be general enough to approach f to an arbitrary
preset precision.

There are two choices of families for Ωp in the literature and both are general enough for approximating
any distribution f .

The first choice is the exponential family. The exponential family can be derived by the descriptive
method through maximum entropy, and has its root in statistical mechanics [24]. A descriptive method
extracts a set of K feature statistics as deterministic transforms of an image I, denoted by φk(I), k =
1, ...,K. Then it constructs a model p by imposing descriptive constraints so that p reproduces the observed
statistics hobs

k extracted from I,

Ep[φk(I)] = hobs
k =

1

M

M∑
m=1

φk(I
obs
m) ≈ Ef [φk(I)] = hk, k = 1, ...,K. (5.3)

One may consider hk as a projected statistics of f(I), thus when M is large enough, p and f will have the
same projected (marginal) statistics on the K chosen dimensions. By the maximum entropy principle [118],
this leads to the Gibbs model,

p(I;β) =
1

Z(β)
exp{−

K∑
k=1

βkφk(I)}.

The parameters β = (β1, ..., βK) are Lagrange multipliers and they are computed by solving the constraint
equations (5.3). The K features are chosen by a minimum entropy principle [274].

The descriptive learning method augments the dimension of the space Ωp by increasing the number of
feature statistics and generates a sequence of exponential families,

Ωd
1 ⊂ Ωd

2 ⊂ · · ·Ωd
K → Ωf .

This family includes all the MRF and minimax entropy models for texture [274]. For example, a type of
descriptive model for texture chooses φj(I) as the histograms of responses from some Gabor filters.

The second choice is the mixture family, which can be derived by integration or summation over some
hidden variables W = (w1, ..., wK),

p(I; Θ) =

∫
p(I,W ; Θ)dW =

∫
p(I|W ; Ψ)p(W ;β)dW.

The parameters of a generative model include two parts Θ = (Ψ,β). It assumes a joint probability dis-
tribution p(I,W ; Θ), and that W generates I through a conditional model p(I|W ; Ψ) with parameters Ψ.
The hidden variables are characterized by a model p(W ;β). W should be inferred from I in a probabilis-
tic manner, and this is in contrast to the deterministic features φk(I), k = 1, ...,K in descriptive models.
The generative method incrementally adds hidden variables to augment the space Ωp and thus generates a
sequence of mixture families,

Ωg
1 ⊂ Ωg

2 ⊂ · · · ⊂ Ωg
K → Ωf 3 f.

120

For example, principal component analysis, wavelet image coding [27,162], and sparse coding [150,186]
all assume a linear additive model where an image I is the result of linear superposition of some window
functions Ψk, k = 1, ...,K, plus a Gaussian noise process n.

I =
K∑
k=1

akΨk + n,

where ak, k = 1, ...,K are the coefficients, Ψi are the eigen vectors in PCA, wavelet bases in image coding,
or over-complete basis for sparse coding. The hidden variables are theK coefficients of bases plus the noise,
so W = (a1, ..., aK ,n).§ The coefficients are assumed to be independently and identically distributed,

ak ∼ p(ak) = const. exp−λo|ak|ρ , k = 1, ...,K.

The norm ρ = 1 for sparse coding [150, 186] and basis pursuit [27], and ρ = 2 for principal component
analysis. Thus we have a simple distribution for W ,

p(W ;β) = const.

k∏
k=1

exp−λo|ak|ρ
∏
(x,y)

exp
−n2(x,y)

2σ2
o .

In this example, the parameters are theK bases plus the parameters in p(W ;β), Θ = {Ψ1, ...,ΨK , λo, σo}.
There are also occlusion models with randomly positioned discs called random collage or deadleafs models
(see [143] and refs. therein).

In this model p(W ;β) is from the exponential family. However, in the literature, hidden variables
ak, k = 1, ...,K are assumed to be iid Gaussian or Laplacian distributed. Thus the concept of descriptive
models are trivialized.

5.2.3 A Multi-layered Generative Model for Texture

Figure 5.3: Texture images with texton processes.

We focus on a multi-layer generative model for texture images and we believe that the same learning
framework can be applied to other patterns such as object shapes. An image I is assumed to be generated by
L layers of stochastic processes, and each layer consists of a finite number of distinct but similar elements,
called “textons”. Fig 5.3 shows three typical examples of texture images, and each texton is represented by
a rectangular window. A layered model is shown in Fig 5.2.

§In PCA, since the bases are orthogonal, ak can be computed as transform, but for over-complete basis, the ak have to be
inferred.

121

Textons at layer l are image patches transformed from a square template Ψl. The j-th texton in layer l is
identified by six transformation variables,

tlj = (xlj , ylj , σlj , τlj , θlj , Alj), (5.4)

where (xlj , ylj) represents the texton center location, σlj the scale (or size), τlj the “shear” (aspect ratio of
height versus width), θlj the orientation, and Alj for photometric transforms such as lighting variability.

tlj defines an affine transform denoted by G[tlj], and the pixels covered by a texton tlj is denoted by
Dlj . Thus the image patch IDlj of a texton tlj is

IDlj = G[tlj]�Ψl, ∀j, ∀l,

where � denotes the transformation operator. Texton examples of a circular template at different scales,
shears, and orientations are shown in Fig. 5.4.

scaleψ shear scale/shear/rotation

Figure 5.4: A template Ψ (leftmost) and its three transformed copies.

We define the collection of all textons in layer l as a texton map,

Tl = (nl, {tlj , j = 1 . . . nl}), l = 1 . . . L,

where nl is the number of textons in layer l.
In each layer, the texton map Tl and the template Ψl generate an image Il = I(Tl; Ψl) deterministically.

If several texton patches overlap at site (x, y) in Il, the pixel value is taken as average,

Il(x, y) =

∑nl
j=1 δ((x, y) ∈ Dlj)IDlj (x, y)∑nl

j=1 δ((x, y) ∈ Dlj)
,

where δ(•) = 1 if • is true, otherwise δ(•) = 0. In image Il, pixels not covered by any texton patches are
transparent. The image I is generated in the following way,

I(T; Ψ) = I(T1; Ψ1) � I(T2; Ψ2) � · · · � I(TL; ΨL), and Iobs = I(T; Ψ) + n. (5.5)

The symbol � denotes occlusion (or linear addition), i.e. I1 � I2 means I1 occludes I2. I(T; Ψ) is called
a reconstructed image and n is a Gaussian noise process n(x, y) ∼ N(0, σ2

0),∀(x, y). Thus pixel value at
site (x, y) in the image I is the same as the top layer image at that point, while uncovered pixels are only
modeled by noises.

In this generative model, the hidden variables are

T = (L, {(Tl, dl) : l = 1, . . . , L}, n),

where dl indexes the order (or relative depth) of the l-th layer.

122

To simplify computation, we assume that L = 2 and the two stochastic layers are called “background”
and “foreground” respectively. The two texton process Tl, l = 1, 2 are assumed to be independent of each
other. We find that this assumption holds true for most of the texture patterns. Otherwise one has to make L
as an unknown complexity parameter in the model.

Thus the likelihood for an observable image I can be computed

p(I; Θ) =

∫
p(I|T; Ψ)p(T;β)dT, (5.6)

=

∫
p(I|T1,T2; Ψ)

2∏
l=1

p(Tl;βl)dT1dT2. (5.7)

Let Ψ = (Ψ1,Ψ2) be texton templates and β = (β1,β2) the parameters for the two texton processes which
we shall discuss in the next section, and σ2 the variance of the noise. The generative part of the model is a
conditional probability p(I|T1,T2; Ψ),

p(Iobs|T1,T2; Ψ) ∝ exp
−
∥∥Iobs − I(T1,T2; Ψ)

∥∥2

2σ2
, (5.8)

where I(T1,T2; Ψ) is the reconstructed image from the two hidden layers without noise (see eq. (5.5)). As
the generative model is very simple, the texture pattern should be captured by the spatial arrangements of
textons in models p(Tl;βl), l = 1, 2, which are in much lower dimensional spaces and are more semanti-
cally meaningful than previous Gibbs models on pixels [274].

In the next section, we discuss the model p(Tl;βl), l = 1, 2 for the texton processes.

5.2.4 A Descriptive Model of Texton Processes

As the texton processes Tl are not generated by further hidden layers in the model, ¶ they must be charac-
terized by descriptive models in exponential families. In this section, we first review some background on
three physical ensembles, and then introduce a Gestalt ensemble for texton process. Finally we show some
experimentsfor realizing the texton processes.

Background: The physics foundation for visual modeling

There are two main differences between a texton process Tl and a conventional texture defined on a lattice
D ⊂ Z2.

• A texton process has an unknown number of elements and each element has many attributes tlj , while
a texture image has a fixed number of pixels and each pixel has only one variable for intensity.

• The neighborhood of a texton can change depending on their relative positions, scales, and orienta-
tions, while pixels always have fixed neighborhoods.

Although a texton process is more complicated than a texture image, they share a common property that they
all have large number of elements and global patterns arise from simple local interactions between elements.
Thus a well-suited theory for studying these patterns is statistical physics — a subject studying macroscopic
properties of a system involving a huge number of elements [24].

¶We may introduce additional layers of hidden variables for curve processes that render the textons. But our model stops at the
texton level in this paper.

123

h= (E, V, N) 23N=10 h= (E, V, N)

n=1010

23N=10 h= (E, V, N) 23N=10

a). micro-canonical ensemble b). canonical ensemble c). grand-canonical ensemble

Figure 5.5: Three typical ensembles in statistical mechanics.

To understand the intuitive ideas behind various texture and texton models, we find it revealing to discuss
three physical ensembles which are shown in Fig. 5.5.

1). Micro-canonical ensemble. Figure 5.5.a) is an insulated system of N elements. The elements could
be atoms or molecules in systems such as solid ferro-magnetic material, fluid, or gas. N is nearly infinity, say
N = 1023. The system is decided by a configuration S = (xN ,mN), where xN describes the coordinates of
the N elements and mN their momenta. The system is subject to some global constraints ho = (N,E, V).
That is, the number of elementsN , the total system energyE, and total volume V are fixed. When it reaches
equilibrium, this insulated system is characterized by a so-called micro-canonical ensemble,

Ωmcn = {S : h(S) = ho, f(S; ho) = 1/|Ωmcn|}.

S is a microscopic state or instance, and h(S) is the macroscopic summary of the system. The state S
is assumed to be uniformly distributed within Ωmcn, thus it is associated with a probability f(S; ho). The
system is identified by ho.

2). Canonical ensemble. Figure 5.5.b) illustrates a small subsystem embedded in a micro-canonical
ensemble. The subsystem has n << N elements, fixed volume v << V and energy e. It can exchanges
energy through the wall with the remaining elements which is called the “heat bath” or “reservoir”. At
thermodynamic equilibrium, the microscopic state s = (xn,mn) for the small system is characterized by a
canonical ensemble with a Gibbs model p(s;β),

Ωcn = {s; p(s;β) = c · exp{−βe(s)}}.

In our recent paper on texture modeling [252], the micro-canonical ensemble is mapped to a Julesz en-
semble where S = I is an infinite image on 2D plane Z2, and ho is a collection of Gabor filtered histograms.
The canonical ensemble is mapped to a FRAME model [274] with s = ID being an image on a finite lattice
D. Intuitively, s is a small patch of S viewed from a window D. The intrinsic relationship between the
two ensembles is that the Gibbs model p(s;β) in Ωcn is derived as a conditional distribution of f(S; ho) in
Ωmcn. There is a duality between ho and β (see [252] and refs therein).

3). Grand-Canonical ensemble. Figure 5.5.c) illustrates a third system where the subsystem is open and
can exchange not only energy but also elements with the bath. So v is fixed, but n and e may change. This
models liquid or gas materials. At equilibrium, the microscopic state s for this small system is governed by
a distribution p(s;βo,β) with βo controlling the density of elements in s. Thus a grand-canonical ensemble
is

Ωgd = {s = (n,xn,mn); p(s;βo,β)}
The grand-canonical ensemble is a mathematical model for visual patterns with varying numbers of ele-
ments, thus lays the foundation for modeling texton processes. In the next subsection, we map the grand-
canonical ensemble to a Gestalt ensemble in visual modeling.

124

The Gestalt ensemble

Without loss of generality, we represent a spatial pattern by a set of attributed elements called textons as it
was discussed in section (5.2.3). To simplify notation, we consider only one texton layer on a lattice D,

T = (n, {tj = (xj , yj , σj , τj , θj , Aj), j = 1, ..., n}).

a b

Figure 5.6: Texton neighborhood. a). a texton has four neighbors; b). Four measurements between texton
t1 and its neighbor t2, dc, dm, α, and γ.

For a texton map T, we define a neighborhood system ∂(T).

∂(T) = {∂t : t ∈ T, ∂t ⊂ T}

where ∂t is a set of neighboring textons for each texton t. We find the nearest neighbors are often enough.
Because each texton covers a 15 × 15 patch on average, a pair of adjacent textons captures image features
at the scale of often more than 30× 30 pixels.

There are a few different ways of defining ∂(T). One may treat each texton as a point, and compute a
Voronoi diagram or Delaunay triangularization which provides graph structures for the neighborhood. For
example, a Voronoi neighborhood was used in (Ahuja and Tuceryan 1989) [2] for grouping dot patterns.
However, for textons, we need to consider other attributes such as orientation in defining neighborhood.
Figure 5.6.a) shows a texton t. The plane is separated into four quadrants relative to the two axes of the
rectangle. In each quadrant, the nearest texton is considered as the neighbor texton. Unlike the Markov
random field on image lattice, the texton neighborhood is no longer translation invariant.

The above neighborhood is defined deterministically. In more general settings, ∂(T) shall be represented
by a set of hidden variables that can be inferred from T. Thus a texton may have a varying number of
neighbors referenced by some indexing (or address) variables. These address variables could be decided
probabilistically depending on the relative positions, orientations, and scales or intensities. This leads to
the so-called mixed Markov random field and is beyond the scope of this paper. Mumford and Fridman
discussed such cases in other context (see [67]).

For a texton t1 and its neighbor t2 ∈ ∂t, we measure five features shown in Figure 5.6.b, which capture
various Gestalt properties:

1. dc: Distance between two centers, which measures proximity.

2. dm: Gap between two textons, which measures connectedness and continuation.

3. α: Angle of a neighbor relative to the main axis of the reference texton. This is mostly useful in
quadrants I and III. α/dc measures the curvature of possible curves formed by the textons, or co-
linearity and co-circularity in the Gestalt language.

125

4. γ: Relative orientations between the two textons. This is mostly useful for neighbors in quadrants II
and IV and measures parallelism.

5. r: Size ratio which denotes the similarity of texton sizes. r is the width of t2 divided by the width of
t1 for neighbors in quadrants I and III and r is length of t2 divided by the length of t1 for neighbors
in quadrants II and IV.

Thus a total of 4 × 5 = 20 pairwise features are computed for each texton plus two features of each
texton itself: The orientation θj and a two dimensional feature the scaling and shearing (σj , τj). Following
the notation of descriptive models in section (5.2.2), we denote these features by

φ(k)(t|∂t), for k = 1, ..., 22.

We compute 21 one dimensional marginal histograms and one two-dimensional histogram for (σj , τj),
averaged over all textons.

H(k)(z) =

n∑
j=1

δ(z − φ(k)(tj |∂tj)), ∀k.

We denote these histograms by

H(T) = (H(1), ...,H(22)), and h(T) =
1

n
H(T).

The vector length of h(T) is the total number of bins in all histograms. One may choose other features
and high order statistics as well. In the vision literature, (Steven, 1978) was perhaps the earliest attempt for
characterizing spatial patterns using histogram of attributes (See [165] for some examples).

The distribution of T is characterized by an statistical ensemble in correspondence to the grand-canonical
ensemble in Fig. 5.5.c. We call it a Gestalt ensemble on a finite lattice D as it is the general representation
for various Gestalt patterns,

A Gestalt ensemble = Ωgst = {T : p(T;βo,β)}. (5.9)

The Gestalt ensemble is governed by a Gibbs distribution,

p(T;βo,β) =
1

Z
exp{−βon− < β, H(T) >}. (5.10)

Z is a partition function. βo is a parameter controlling texton density. We can rewrite the vector valued
potential functions β as energy functions β(k)(), then we have

p(T;βo,β) =
1

Z
exp{−βon−

n∑
j=1

K=22∑
k=1

β(k)(φ(k)(tj |t∂j))},

This model provides a rigorous way for integrating multiple feature statistics into one probability model,
and generalizes existing point processes [30].

The probability p(T;βo,β) is derived from the Julesz ensemble (or micro-canonical ensemble). We first
define a close system with N >> n elements on a lattice D, and we assume the density of textons is fixed

lim
N→∞

N

|D| = ρ, as N →∞, and D → Z2.

126

Thus we obtain a Julesz ensemble on Z2 [252],

A Julesz ensemble = Ωjlz = {T∞ : h(T∞) = ho, N →∞, f(T∞; ho)},

where ho = (ρ,h) is the macroscopic summary of the system state T∞. On any finite image, a texton
process should be a conditional density of f(T∞; ho). There is a one-to-one correspondence between
ho = (ρ,h) and the parameters (βo,β).

We can learn the parameters (βo,β) and select effective features φ(k) by the descriptive method — the
minimax entropy learning paradigm [274]. In the following subsection, we discuss some computational
issues and experiments for learning p(T;βo,β) and simulating the Gestalt ensembles.

5.2.5 An Integrated Learning Framework

After discussing the descriptive models for the hidden texton layers, we now return to the integrated frame-
work presented in section (5.2.3).

The Integrated Learning Paradigm

The generative model for an observed image Iobs is rewritten from equation (5.7),

p(Iobs; Θ) =

∫
p(Iobs|T1,T2; Ψ)

2∏
l=1

p(Tl;βl)dT1dT2. (5.11)

We follow the ML-estimate in equation (11.60),

Θ∗ = arg max
Θ∈ΩgK

log p(Iobs; Θ).

The parameters Θ include the texton templates Ψl, the Lagrange multipliers βl, l = 1, 2 for two Gestalt
ensembles, and the variance of the Gaussian noise, σ2

Θ = (Ψ,β, σ), Ψ = (Ψ1,Ψ2), and β = (β10,β1, β20,β2).

To maximize the log-likelihood, we take the derivative with respect to Θ, and set it to zero. Let T =
(T1,T2),

∂ log p(Iobs; Θ)

∂Θ

=

∫
∂ log p(Iobs,T; Θ)

∂Θ
p(T|Iobs; Θ)dT

=

∫
[
∂ log p(Iobs|T; Ψ)

∂Ψ
+

2∑
l=1

∂ log p(Tl;βl)

∂βl
] p(T|Iobs; Θ) dT

= Ep(T|Iobs;Θ)[
∂ log p(Iobs|T; Ψ)

∂Ψ
+

2∑
l=1

∂ log p(Tl;βl)

∂βl
] = 0.

In the literature, there are two well-known methods for solving the above equation. One is the EM
algorithm [45], and the other is data augmentation [230] in the Bayesian context. We propose to use a
stochastic gradient algorithm [89] which is more effective for our problem.

127

A Stochastic Gradient Algorithm
– Step 0. Initialize the hidden texton maps T and the templates Ψ using a simplified likelihood as

discussed in the next section. Set β = 0.
Repeat steps I and II below iteratively (like EM-algorithm).
– Step I. With the current Θ = (Ψ,β, σ), obtain a sample of texton maps from the posterior probability

Tsyn
m ∼ p(T|Iobs; Θ) ∝ p(Iobs|T1,T2; Ψ)p(T1;β1o,β1)p(T2;β2o,β2), m = 1, ...,M. (5.12)

This is Bayesian inference. The sampling process is realized by a Monte Carlo Markov chain which simu-
lates a random walk with two types of dynamics.

• I.a). A diffusion dynamics realized by a Gibbs sampler — sampling (relaxing) the transform group
for each texton. For example, move textons, update their scales and rotate them etc.

• I.b). A jump-dynamics — adding or removing a texton (death/birth) by reversible jumps [85].

— Step II. We treat Tsyn
m ,m = 1, ...,M as “observations”, and estimate the integration in eq. (5.12) by

importance sampling. Thus we have

∂ log p(Iobs|T; Ψ)

∂Ψ
+

2∑
l=1

∂ log p(Tl;βl)

∂βl
= 0

We learn Θ = (Ψ,β, σ) of the texton templates and Gibbs models respectively by gradient ascent:

• II.a). Update the texton templates Ψ by maximizing
∑M

m=1 log p(Iobs|Tsyn
m ; Ψ); this is a fitting pro-

cess. In our experiment, the texton templates Ψ1,Ψ2 are represented by 15 × 15 windows and thus
there are 2× 225 unknowns.||

• II.b). Update βlo,βl, l = 1, 2 by maximizing
∑M

m=1 log p(Tsyn
m ;βlo,βl). This is exactly the maxi-

mum entropy learning process in the descriptive method except that the texton processes are given by
step I.

• II.c). Update σ for the noise process.

In step I, we choose to sample M = 1 example each time. If the learning rate in steps II.a) and II.b) is
slow enough, the expectation is estimated by importance sampling through samples Tsyn over time. It has
been proved in statistics [89] that such an algorithm converges to the optimal Θ if the step size in step II
satisfies some mild conditions.

The following are some useful observations.
1. Descriptive models and learning is part of the integrated learning framework, in terms of both repre-

sentation and computing (Step II.b)).
2. Bayesian vision inference is a sub-task (step I) of the integrated learning process. A vision system,

machine or biological, evolves by learning generative models p(I; Θ) and makes inference about the world
T (orW in more general generative models) using the current imperfect knowledge Θ — the Bayesian view
of vision. What are missing in this learning paradigm are “discovery process” that introduces new hidden
variables.

||Each point in the window can be transparent, and thus the shape of the texton can change during the learning process.

128

Mathematical definitions of visual patterns in the integrated learning paradigm

Any visual learning paradigm must answer the question of conceptualization: How do we define, mathe-
matically, a visual concept or a pattern? For example, a human face, a wood grain texture, and so on. In this
section, we show how the descriptive and generative methods conceptualize a visual pattern.

The concept of a visual pattern is an abstraction (or summary) for an assembly of configurations (or
instances) s that are not distinguished by human perception for a certain vision purpose. Because of the
stochastic nature of the visual signal, instances in this assembly are governed by a frequency f(s), and an
instance can then be considered a random sample from the probability distribution f(s). Thus a concept is
said to be equal to an ensemble,

a visual concept c = Ωc = {s : f(s)}.

By a descriptive method, the ensemble is defined through statistical constraints (see equation.(5.3)),

a descriptive concept c = Ω(hc) = {s : f(s; hc), Ef [h(s)] = hc}.

For example, s could be a human face represented by a list of key points, or s = I could be a texture image.
h(s) is the statistics extracted from s which are sufficient for a certain vision purpose. hc is vector value
that identifies this concept. hc corresponds to a Gibbs model p(s;β) with parameter β. It is accepted that
two concepts may have overlapping ensembles.

When the signal is homogeneous, such as texture or texton maps, the expectation Ef [h(s)] can be
computed from a single instance through spatial average over a large enough lattice D, thus we can define a
concept as an equivalence class — called the Julesz ensemble in (Zhu et al. 2000) [273].

a descriptive concept c = Ω(hc) = {s : h(s) = hc D → Z2, f(s; hc)},

For example, for defining a texture, hc is the sufficient and necessary statistics extracted in texture per-
ception. The ensembles on large lattice D → Z2 are disjoint and deterministic as f(s; hc) is a uniform
distribution.

Though the pure descriptive concept and Julesz ensemble are technically sound, they are only a coarse
or first stage approximation to human perception in texture discrimination.Texture studies in psychology
[16, 123] suggest that human vision is sensitive to the perception of some basic elements called textons,
perhaps for some vision purpose. It was also argued and demonstrated by Malik et al. [148, 159, 160]
that the detection of individual textons plays an important role in texture discrimination, segmentation and
grouping. However, it was unclear what textons really are.

We argue that the mathematical definition of textons must be guided by a generative model. So the
integrated learning paradigm extends the Julesz ensemble definition to a generative concept with W being
the hidden variables,

a generative concept c = {s : f(s; Θ) =

∫
f(s|W ; Ψ)f(W ; hw)dW},

where W are instances of a descriptive ensemble,

{W : h(W) = hw, D → Z2, f(W ; hw)}.

Thus a concept is identified by the parameters Θ = (Ψ,hw) (or Θ = (Ψ,β), because of the duality between
hw and β). In this definition, Ψ is a mathematically sound definition of texton.

129

5.2.6 Effective Inference by Simplified Likelihood

In this section, we address some computational issues in the integrated learning paradigm, and propose a
method for initializing the stochastic gradient algorithm (in step 0).

Initialization by likelihood simplification and clustering

The stochastic algorithm presented in section (5.2.5)) needs a long “burn-in” period if it starts from an
arbitrary condition. To accelerate the computation, we use a simplified likelihood in step 0 of the stochastic
gradient algorithm. Thus given an input image Iobs, our objective is to compute some good initial texton
templates Ψ1,Ψ2 and hidden texton maps T1,T2, before the iterative process in steps I and II.

A close analysis reveals that the computational complexity is largely due to the complex coupling be-
tween the textons in both the generative model p(I|T1,T2; Ψ) and the descriptive models p(T1;β1o,β1)
and p(T2;β2o,β2). Thus we simplify both models by decoupling the textons.

Firstly, we decouple the textons in p(T1;β1o,β1) and p(T2;β2o,β2). We fix the total number of textons
n1 + n2 to an excessive number, thus we do not need to simulate the death-birth process. We set β1 and
β2 to 0, therefore p(Tl;βlo, βl) becomes a uniform distribution and the texton elements are decoupled from
spatial interactions.

Secondly, we decouple the textons in p(Iobs|T1,T2; Ψ). Instead of using the image generating model
in eq. (5.5) which implicitly imposes couplings between texton elements through eq. (5.8), we adopt a
constraint-based model

p(Iobs|T,Ψ) ∝ exp{−
2∑
l=1

nl∑
j=1

||Iobs
Dlj
−G[Tlj]�Ψl||2/2σ2}, (5.13)

where Iobs
Dlj

is the image patch of the domain Dlj in the observed image. For pixels in Iobs not covered by
any textons, a uniform distribution is assumed to introduce a penalty.

We run the stochastic gradient algorithm on the decoupled log-likelihood, which reduces to a conven-
tional clustering problem. We start with two random texton maps and the algorithm iterates the following
two steps.

I). Given Ψ1 and Ψ2, the algorithm runs a Gibbs sampler to change each texton tlj respectively, by
moving, rotating, scaling the rectangle, and changing the cluster into which each texton falls according to
the simplified model of eq. (5.13). Thus the texton windows intend to cover the entire observed image, and
at the same time try to form tight clusters around Ψ.

II). Given T1 and T2, the algorithm updates the texton Ψ1 and Ψ2 by averaging

Ψl =
1

nl

nl∑
j=1

G−1[Tlj]� Iobs
Dlj
, l = 1, 2,

where G−1[Tlj] is the inverse transformation. The layer order d1 and d2 are not needed for the simplified
model.

This initialization algorithm for computing (T1,T2,Ψ1,Ψ2) resembles the transformed component
analysis [66]. It is also inspired by a clustering algorithm by (Leung and Malik, 1999) [149], which did
not engage hidden variables, and thus compute a variety of textons Ψ at different scale and orientations. We
also experimented with representing the texton template Ψ by a set of Gabor bases instead of a 15 × 15
window. However, the results were not as encouraging as in this generative model.

130

Experiment I: Texton clustering

In this subsection, we present some experiments for initialization and clustering as section (5.2.6) stated.

Figure 5.7: Result of the initial clustering algorithm.

Fig. 5.7 shows an experiment on the initialization algorithm for a crack pattern. 1055 textons are used
with the template size of 15× 15. The number of textons is as twice as necessary to cover the whole image.
In optimizing the likelihood in eq. (5.13), an annealing scheme is utilized with the temperature decreasing
from 4 to 0.5. The sampling process converges to a result shown in Fig. 5.7.

Fig. 5.7.a) is the input image; Fig. 5.7.b) and Fig. 5.7.d) are the texton maps T1 and T2 respectively.
Fig. 5.7.c and Fig. 5.7.e are the cluster centers Ψ1 and Ψ2, shown by rectangles respectively. Fig. 5.7.f is the
reconstructed image. The results demonstrate that the clustering method provides a rough but reasonable
starting solution for generative modeling.

5.2.7 Experiment II: Integrated learning and synthesis

In this section, we show some experimental results obtained by the integrated learning paradigm. For an
input image, we first do a clustering step as section (8.2.3) showed. Then we run the stochastic gradient
algorithm on the full models to refine the clustering results.

Fig. 5.8 shows the result for the crack image obtained by the stochastic gradient algorithm, which took
about 80 iterations of the two steps (Step I and Step II), following the initial solution (Step 0) shown in
Fig. 5.7. Fig. 5.8.b) and Fig. 5.8.d) are the background and foreground texton maps T1 and T2 respectively.
Fig. 5.8.c) and Fig. 5.8.e) are the learned textons Ψ1,Ψ2 respectively. Fig. 5.8.f) is the reconstructed image
from learned Texton maps and templates. Compared to the results in Fig. 5.7, the results in Fig. 5.8 have
more precise texton maps and accurate texton templates due to an accurate generative model. The foreground
texton Ψ2 is a bar, and one pixel at corner of the left-top is transparent.

The integrated learning results for a cheetah skin image are shown in Fig. 5.9. It can be seen that in the
foreground template, the surround pixels are learned as being transparent and the blob is exactly computed
as the texton. Fig. 5.10 are the results for a brick image. No point in the template is transparent for the gap
lines between bricks.

Figure 5.11 shows the learning of another short crack patterns. Fig. 5.12 displays a pine corn pattern.
The seeds and the black intervals are separated cleanly, and the reconstructed image keeps most of the pine

131

Figure 5.8: Generative model learning result for the crack image. a) input image, b) and d) are background
and foreground textons discovered by the generative model, c) and e) are the templates for the generative
model, f) is the reconstructed image from the generative model.

structures. However the pine corn seeds are learnt as the background textons and the gaps between pine
corns are treated as foreground textons.

Figure 5.9: Generative model learning result for a cheetah skin image. The notations are the same as in
Fig. 5.8.

After the parameters Ψ and β of a generative model are discovered for a type of texture images, new
random samples could be drawn from the generative model. This proceeds in three steps: First, texton
maps are sampled from the Gibbs models p(T1;β1) and p(T2;β2) respectively. Second, background and
foreground images are synthesized from the texton maps and texton templates. Third, the final image is
generated by combining these two images according the occlusion model.

We shown synthesis experiments on three patterns.

1. Fig 5.13 and Fig. 5.14 are two synthesis examples of the two layered model synthesis for the cheetah

132

Figure 5.10: Generative model learning result for a brick image. The notations are the same as in Fig. 5.8.

Figure 5.11: Generative model learning result for a crack image. The notations are the same as in Fig. 5.8.

skin pattern. The templates used here are the learned results in Fig 5.9.

2. Figure 5.16 shows texture synthesis for the crack pattern computed in Figure 5.11.

3. Figure 5.16 displays texture synthesis for the brick pattern in Figure 5.10.

Note that, in these texture synthesis experiments, the Markov chain operates with meaningful textons
instead of pixels.

5.2.8 Discussion

In this paper, we present a visual learning paradigm which integrates and extends descriptive and generative
models, and which also provides sound framework for visual conceptualization and for defining textons. The
hierarchical model for textures has advantage over previous pure descriptive method with Markov random
fields on pixel intensities.

133

Figure 5.12: Generative model learning result for a pine corn image. The notations are the same as in
Fig. 5.8.

Figure 5.13: An example of a randomly synthesized cheetah skin image. a) and b) are the background
and foreground texton maps sampled from p(Tl;βl); d) and e) are synthesized background and foreground
images from the texton map and templates in c); f) is the final random synthesized image from the generative
model.

Firstly, from the representational perspective, the neighborhood in the texton map are much smaller
than the pixel neighborhood in a FRAME model [274]. The generative method captures more semantically
meaningful elements on the texton maps.

Secondly, from the computational perspective, the Markov chain operating the texton maps can move
textons according to affine transforms and can add or delete a texton by death/birth dynamics, thus it is
much more effective than the Markov chain used in traditional Markov random fields which flips one pixel
intensity at a time.

We show that the integration of descriptive and generative methods is a natural path for visual learning.
We argue that a vision system should evolve by progressively replacing descriptive models with generative

134

Figure 5.14: Second example of a randomly synthesized cheetah skin image. Notation is the same as in
Fig. 5.13.

Figure 5.15: An example of a randomly synthesized crack image. Notations are the same as in Fig. 5.13.

models, which realizes a transition from empirical and statistical models to physical and semantical models.
The work presented in this paper provides a step towards this goal.

In future research, we shall develop effective algorithms for sampling the Gestalt ensembles, and extend
the generative model to curve and graph processes. These models will be employed for general purpose
vision tasks, such as segmentation and grouping.

135

Figure 5.16: An example of a randomly synthesized brick image. Notation is the same as in Fig. 5.13.

136

6

Primal Sketch: Integrating Textures and
Textons

In his monumental book [166], Marr inherited Julesz’s texton [125] notion and proposed the concept of
image primitives as basic perceptual tokens, such as edges, bars, junctions, and terminators. Inspired by the
Nyquest sampling theorem in signal processing, Marr went a step further and asked for a token represen-
tation which he named “primal sketch” as a perceptually lossless conversion from the raw image. He tried
to reconstruct the image with zero-crossings unsuccessfully and his effort was mostly limited by the lack of
proper models of texture.

6.1 Marr’s Conjecture on Primal Sketch

In the early stage of vision perception, an image may be divided into two components – the structural part
with noticeable elements called "textons" by Julesz or "image primitives" by Marr, and the textural part
without distinguishable elements in preattentive vision. The structural part is often composed of objects,
such as tree twigs and trunks, at near distance whose positions and shapes can be clearly perceived. In
contrast, the textural part is composed of objects at far distance whose structures becomes indistinguishable
and thus yield various texture impressions.

The modeling of texture and structure has been a long standing puzzle in the study of early vision. In
the 1960s, Julesz first proposed a texture theory and conjectured that a texture is a set of images sharing
some common statistics on some features related to human perception. Later he switched to a texton theory
and identified bars, edges, terminators as textons – the atomic elements in early vision. Marr summarized
Julesz’s theories along with experimental results and proposed a primal sketch model in his book as a "sym-
bolic" or "token" representation in terms of image primitives. Marr argued that this symbolic representation
should be parsimonious and sufficient to reconstruct the original image without much perceivable distortion.

In fact, Andrew Glennerster [50] shows that the primal sketch representation provides a stable coordinate
frame under rapid eye rotation, which is biologically plausible. Once certain task is defined, the visual
system extracts ’raw’ visual information from the primal sketch representation to higher level information.

Despite many inspiring observations, Marr’s description provided neither an explicit mathematical for-
mulation nor a rigorous definition of the primal sketch model.

Since the 1980s, the studies of early image modeling followed two distinct paths which represent two
prevailing mathematical theories for generative image modeling respectively. In fact, the two theories are
two distinct ways for learning image manifolds residing in different entropy regimes respectively. In the
following, we should briefly review the two theories.

137

The first theory is a two layer generative model originated from computational harmonic analysis which
represents images by a linear superposition of image bases selected from a dictionary – often over-complete
like various wavelets, image pyramids, and sparse coding. Each image base is supposed to represent some
image features with hidden variables describing their locations, orientations, scales, and intensity contrast.
The image is reconstructed with minimum error on the pixel intensity.

The second theory is the Markov random fields (MRF) originated from statistical mechanics. It repre-
sents a visual pattern by pooling the responses of a bank of filters over all locations into some statistical
summary like the histograms which are supposed to represent our texture impressions. On large image
lattices, a Julesz ensemble is defined as a perceptual equivalence class where all images in the set share
identical statistics. The statistics or texture impression are the macroscopic properties and the differences
between microscopic states (i.e. image instances in the Julesz ensemble) are ignored. In other words, all
images in this equivalence class are perceptually the same, replacing one by the other does not cause per-
ceivable distortion, although the two images have large a difference in pixel by pixel comparison. The image
patches within local windows is shown to follow some MRF models called FRAME.

6.2 The Two Layer Model

Figure 6.1: A sparse coding example computed by matching pursuit. (b) is a symbolic representation where
each base Bk is represented by a bar at the same location, with the same elongation and orientation. The
isotropic LOG bases are represented by a circle.

According to the model, the image is generated as a mosaic as follows: the image lattice is divided into
two disjoint part: a structure domain, or a sketchable part and a textured domain, or a non-sketchable part,

D = Dsk ∪Dnsk, Dsk ∩Dnsk = φ. (6.1)

The image intensities on the structure domain are represented by a set of coding functions for edges
and ridges. The image intensities on the texture domain are characterized by Markov random fields that
interpolate the structure domain of the image. See figures 6.3 and 6.4 for two examples of primal sketch
model.

6.2.1 Structure domain

The structure domain Dsk is further divided into a number of disjoint patches with each patch being fitted
by an image primitive

Dsk = ∪Ki=1Dsk,i;Dsk,i ∩ Λsk,j = φ, i 6= j. (6.2)

138

Figure 6.2: A collection of local structure elements employed by the model. There are eight types of
elements: blobs, end points, edges, ridges, multi-ridges, corners, junctions and crosses. (a) The symbolic
representation. (b) The photometric representation.

Some examples of the image primitive are show in figure 6.2. These primitives are aligned through their
landmarks to form a sketch graph Ssk. Specifically, we index the selected image primitives by i = 1, ..., n,
and denote image patch for primitive i as B(x, y|θi). Here

θi = (θtopological,i, θgeometric,i, θphotometric,i), (6.3)

where θtopological,i is the type (degree of arms) of the primitive (blob, terminator, corner, junctions, etc.),
θgeometric,i collects the locations of the landmarks of the primitive, and θphotometric,i collects the intensity
profiles of the arms of the primitive. The sketch graph is a layer of hidden representation, which has to be
inferred from the image

Ssk = ((Dsk,i, B(x, y|θi), ai), i = 1, ..., n), (6.4)

where Ssk decides the structure domain of the image, and ai is the address variable pointing to the neighbors
of the vertex Ssk,i = (Dsk,i, B(x, y|θi).

The model for the structure domain of the image is

I(x, y) =

n∑
i=1

B(x, y|θi) + ε(x, y), (x, y) ∈ Dsk, i = 1, ..., n, (6.5)

where ε(x, y) denotes the noise term. Since the set of pixels coded by B(x, y | θi) do not overlap each other
, B(x, y|θi) is similar to coding vectors in vector quantization.

6.2.2 The dictionary of image primitives

An edge segment is modeled by a 2D function that is constant along the edge, and has a profile across the
edge. Specifically,

139

Figure 6.3: Primal sketch model. (a) Observed image. (b) “Sketchable” part is described by a geometric
sketch graph. (c) The sketchable part of the image. (d) Fill in the “non-sketchable” part by matching feature
statistics.

B(x, y | θ) = f(−(x− u) sinα+ (y − v) cosα), (6.6)

where

−l < (x− u) cosα+ (y − v) sinα ≤ l,
−w ≤ −(x− u) sinα+ (y − v) cosα ≤ w.

That is, the function B(x, y | θ) is supported on a rectangle centered at (u, v), with length 2l+ 1, width
2w + 1, and orientation α.

For the profile function f(x), let f0(x) = −1/2 for x < 0 and f0(x) = 1/2 for x ≥ 0, and let gs() be a
Gaussian function of standard deviation s. Then f(x) = a+ bf0(x) ∗ gs(x). This is the model proposed by
Elder and Zucker. The convolution with Gaussian kernel is used to model the blurred transition of intensity
values across the edge, caused by the three dimensional shape of the underlying physical structure, as well as
the resolution and focus of the camera. As proposed by Elder and Zucke, the parameter s can be determined
by the distance between the two extrema of the second derivative f ′′(x).

Thus in the coding function B(x, y | θ) for an edge segment, θ = (t, u, v, α, l, w, s, a, b), namely, type
(which is edge in this case), center, orientation, length, width, sharpness, average intensity, intensity jump.
θ captures geometric and photometric aspects of an edge explicitly, and the coding function is non-linear in
θ.

A ridge segment has the same functional form, where the profile f(x) is a composition of two edge
profiles. The profile of a multi-ridge is a composition of two or more ridge profiles. A blob function is
modeled by rotating an edge profile, more specifically, B(x, y | θ) = f(

√
(x− u)2 + (y − v)2− r), where

(x−u)2 +(y−v)2 ≤ R2, and again f(x) = a+bf0(x)∗gs(x) being a step edge convolved with a Gaussian
kernel. This function is supported on a disk area centered at (u, v) with radius R. The transition of intensity
occurs at the circle of radius r < R.

140

Figure 6.4: Examples of primal sketch model. (a) Observed image. (b) Sketch graph. (c) Synthesized image
from the fitted model.

The corners and junctions are important structures in images. They are modeled as compositions of edge
or ridge functions. When a number of such coding functions join to form a corner or a junction, the image
intensities of the small number of overlapping pixels are modeled as averages of these coding functions. The
end point of a ridge is modeled by a half blob.

See Figure (6.2) for a sample of local structure elements, which are the coding functions and their
combinations. There are eight types of elements: blobs, end points, edges, ridges, multi-ridges, corners,
junctions and crosses. Figure (6.2.a) shows the symbolic representations of these elements. Figure (6.2.b)
displays the image patches of these elements.

Let Ssk be the sketch graph formed by these coding functions. The graph has a set of nodes or vertices
V = ∪4

d=0Vd, where Vd is the set of nodes with degree d, i.e., the nodes with d arms. For instance, a blob
node has degree 0, an end point has degree 1, a corner has degree 2, a T-junction has degree 3, and a cross
has degree 4. We do not allow nodes with more than 4 arms. Ssk is regularized by a simple spatial prior
model:

p(Ssk) ∝ exp{−
4∑
d=0

λd|Vd|}, (6.7)

where |Vd| is the number of nodes with d arms. The prior probability or the energy term γsk(Ssk) =∑4
d=0 λd|Vd| penalizes free end points by setting λsk at a large value.

6.2.3 Texture domain

The texture domain Dnsk is segmented into m regions of homogenous texture patterns,

Dnsk = ∪mj=1Dnsk,j ;Dnsk,i ∩Dnsk,j = φ, i 6= j. (6.8)

Within each region j, we pool the marginal histograms of the responses from the K filters, hj = (hj,k, k =
1, ...,K), where

hj,k,z =
1

|Dnsk,j |
∑

(x,y)∈Dnsk,j

δ(z;Fk ∗ I(x, y)), (6.9)

141

where z indexes the histogram bins, and δ(z;x) = 1 if x belongs to bin z, and δ(z;x) = 0 otherwise. This
yeilds a Markov random field model for each texture region:

p(IDnsk,j
) ∝ exp{−

∑
(x,y)∈Dnsk,j

K∑
k=1

φj,k(Fk ∗ I(x, y))}. (6.10)

These Markov random fields have the structure domain as boundary conditions, because when we apply
filters Fk on the pixels in Dnsk, these filters may also cover some pixels in Dsk. These Markov random
fields in-paint the texture domain Dnsk while interpolating the structure domain Dsk, and the in-painting is
guided by the marginal histograms of linear filters within each region.

Let Snsk = ((Dnsk,j , hj,k ↔ φj,k), j = 1, ...,m, k = 1, ...,K) denotes the segmentation of the texture
domain. Snsk follows a prior model p(Snsk) ∝ exp{−γnsk(Snsk)}, for instance, γnsk(Snsk) = ρm to
penalize the number of regions.

6.2.4 Integrated model

Formally, we can integrate the structure model (6.5) and the texture model (6.10) into a probability distri-
bution. Our inspiration for such an integration comes from the model of Mumford and Shah [178]. In their
method, the prior model for the noiseless image can be written as

p(I, S) =
1

Z
exp{−

∑
(x,y)∈D/S

λ|∇I(x, y)|2 − γ|S|}, (6.11)

where S is a set of pixels of discontinuity that correspond to the boundaries of objects, and |S| is the number
of pixels in S. In model (6.11), S is the structure domain of the image, and the remaining part is the texture
domain.

Our model can be viewed as an extension of the Mumford-Shah model. Let S = (Ssk, Snsk), we have

p(I, S) =
1

Z
exp{ −

n∑
i=1

∑
(x,y)∈Dsk,i

1

2σ2
(I(x, y)−Bi(x, y | θi))2 − γsk(Ssk)

−
m∑
j=1

∑
(x,y)∈Dnsk,j

K∑
k=1

φj,k(Fk ∗ I(x, y))− γnsk(Snsk)}. (6.12)

Compared to Mumford-Shah model, model (6.12) is more sophisticated in both the structure part and
texture part.

6.2.5 The sketch pursuit algorithm

To learn the integrated model, traditional maximum likelihood algorithm requires MCMC method for global
inference. Instead, a greedy algorithm, sketch pursuit algorithm is proposed. It consists of the following
phases:

1. Phase: an edge and ridge detector based on linear filters is run to give an initialization for the sketch
graph.

142

2. Phase: a greedy algorithm is used to determine the sketch graph but without using the spatial prior
model.

3. Phase: a greedy algorithm based on a set of graph operators is used to edit the sketch graph to achieve
good spatial organization as required by the spatial prior model.

4. Phase: the remaining portion of the image is segmented into homogeneous texture regions by cluster-
ing the local marginal histograms of filter responses. The inference algorithm yields two outputs:

(a) a sketch graph for the image, with edge and ridge segments, as well as corners and junctions.

(b) a parameterized representation of the image which allows the image to be re-synthesized and to
be encoded efficiently.

6.3 Hybrid Image Templates

The active basis templates target the sketch parts of the images. In this section, we shall further add the
texture appearances of the images, so the templates become hybrid image templates HIT.

Figure 6.5: In the space of image patches, there are simple shape primitives, and there are also stochastic
texture patterns.

The motivation is that in the space of image patches, there are simple geometric primitives such as edges,
but there are also stochastic texture patterns, as illustrated by Fig. 6.5. We both to describe an image.

For instance, the image in Fig. 6.9 consists both the patches of geometric primitives on the object bound-
ary and the patches of textures on the object surface.

In addition to sketch features and texture features, we also add flatness features and color features, so that
the templates give complete descriptions of the images. Fig. 6.7 shows some examples of such templates,
with local sketch (edge or bar), texture gradients (with orientation field), flatness regions (smooth surface
and lighting), and colors.

The modeling and learning strategy of hybrid template is similar to active basis. For each type of
features, we pool a background histogram q from natural images, and then estimate the distribution p by
exponential tilting. We select the features sequentially as in active basis. After each feature is selected, it
will inhibit nearby features of the same type.

143

Figure 6.6: An image of an object consists of patches of simple primitives and patches of textures.

Naturally, there are large variations in the representations of different classes, for example, teapots may
have common shape outline, but do not have common texture or color, the hedgehog in Fig. 6.9 has distinct
texture and shape, but its color is often less distinguishable from its background. the essence of our learning
framework is to automatically select, in a principled way, informative patches from a large pool and compose
them into a template with a normalized probability model.

6.3.1 Representation

Let Λ be the image lattice for the object template which is typically of 150× 150 pixels. This template will
undergo a similarity transform to align with object instance in images. The lattice is decomposed into a set
of K patches {Λk, k = 1, 2...,K} selected from a large pool in the learning process through feature pursuit.
These patches belong to four bands: sketch, texture/gradient field, flatness, and color respectively, and do
not form a partition of the lattice Λ for two reasons:

• Certain pixels on Λ are left unexplained due to inconsistent image appearances at these positions.

• Two selected patches from different bands may overlap each other in position. For example, a sketch
patch and a color patch can occupy the same region, but we make sure the sketch feature descriptor
and color descriptor extracted from them would represent largely uncorrelated information.

The hybrid image template consists of the following components,

HIT = ({Λk, `k, {Bk or hk}, δk :, k = 1, 2, ...,K}, Θ) (6.13)

where

1. Λk ⊂ Λ is the k-th patch lattice described above.

2. `k ∈ {′skt′,′ txt′,′ flt′,′ clr′} is the type of the patch.

144

Figure 6.7: The hybrid templates consist of sketch, texture, flatness, and color features.

3. Bk or hk is the feature prototype for the k-th patch. If `k = ′skt′, then the patch is described by
a basis function Bk for the image primitive, otherwise it is described by a histogram hk for texture
gradients, flatness or color respectively.

4. δk = (δkx, δky, δkθ): the latent variables for the local variabilities of the k-th patch, i.e. the local
translations and rotations of selected patches.

5. Θ = {λk, zk : k = 1, 2, ...,K} are the parameters of the probabilistic model p (to be discussed in the
subsection). λk, zk are the linear coefficient and normalizing constant for the k-th patch.

6.3.2 Prototypes, ε - balls, and saturation function

Let IΛk be the image defined on the patch Λk ⊂ Λ. For `k = ′skt′, the prototype Bk defines a subspace
through an explicit function for IΛk (a sparse coding model),

Ω(Bk) = {IΛk : IΛk = ckBk + ε}. (6.14)

For `k ∈ {′txt′,′ flt′,′ clr′}, the prototype defines a subspace through an implicit function for IΛk which
constrains the histogram (a Markov random field model),

Ω(hk) = {IΛk : H(IΛk) = hk + ε}. (6.15)

H(IΛk) extracts the histogram (texture gradient, flatness, or color) from IΛk .
In Ω(Bk), the distance is measured in the image space,

145

ρex(IΛk) = ‖IΛk − cBk‖2 (6.16)

while in Ω(hk), the distance is measured in the projected histogram space with norm.

ρim(IΛk) = ‖H(IΛk)− hk‖2 (6.17)

Intuitively, we may view Ω(Bk) and Ω(hk) as ε-balls centered at the prototypes Bk and hk , respec-
tively, with different metrics. Each ε-ball is a set of image patches which are perceptually equivalent. Thus
the image space of HIT is the product space of these heterogeneous subspaces: Ω(HIT) =

∏K
k=1 Ωk, on

which a probability model is concentrated. Due to statistical fluctuations in small patches, these ε-balls have
soft boundaries. Thus we use a sigmoid function to indicate whether a patch IΛk belongs to a ball Ω(Bk) or
Ω(hk).

r(IΛk) = S(ρ(IΛk)), (6.18)

where ρ can be either ρex or ρim. S(x) is a saturation function with maximum at x = 0:

S(x) = τ

(
2

1 + e−2(η−x)/τ
− 1

)
, (6.19)

with shape parameters τ and η. We set τ = 6 and η is locally adaptive: η = ‖IΛk‖2 where IΛk denotes
the local image patch. We call r(IΛk) the response of the feature (prototype Bk or hk) on patch IΛk .

6.3.3 Projecting image patches to 1D responses

Though the image patches are from heterogeneous subspaces of varying dimensions with different metrics,
we project them into the one-dimensional feature response r(IΛk), on which we can calculate the statistics
(expectation) of r(IΛk) over the training set regardless of the types of patches. This way it is easy to integrate
them in a probabilistic model.

In the following we discuss the details of computing the responses for the four different image subspaces.
Given an input color image I on lattice Λ, we first transform it into a HSV-space with HS being the

chromatic information and V the gray level image. We apply a common set of filters ∆ to the gray level
image. The dictionary ∆ includes Gabor filters (sine and cosine) at 3 scales and 16 orientations. The Gabor
filter of the canonical scale and orientation is of the form: F (x, y) ∝ exp{−(x/σ1)2 − (y/σ2)2}eix with
σ1 = 5, σ2 = 10.

1. Calculating responses on primitives. When a patch IΛk contains a prominent primitive, such as an
edge or bar, it is dominated by a filter which inhibits all the other filters. Thus the whole patch is represented
by a single filter, which is called a Basis function Bk ∈ ∆. The response is calculated as the local maximum
over the activity δk,

rskt(IΛk) = max
δx,δy,δθ

S(‖I− cBx+δx,y+δy,o+δo‖2). (6.20)

The local maximum pooling is proposed by [?] as a possible function of complex cells in V1.
2 Calculating responses on texture. In contrast to the primitives, a texture patch usually contains many

small elements, such as the patch on the hedgehog body in Figure ??. As a result, many filters have medium
responses on the image patch. Thus we pool a histogram of these filters collectively over the local patch to
form a histogram descriptor H(I).

The texture response is calculated by

146

rtxt(IΛk) = S(‖H(IΛk)− h‖2), (6.21)

where h is a pre-computed histogram prototype (one may consider it as a cluster center of similar texture
patches). More specifically, h is obtained by averaging the histograms at the same position of roughly
aligned positive example images. For texture, we are only interested in the medium to strong strength along
certain directions. So we replace the indicator function, which is often used in histogram binning, by a
continuous function a(x) = 12

1+e−x/3
− 6. The histogram is then weighted into one bin for each filter,

Ho(IΛk) =
1

|Λk|
∑

(x,y)∈Λk

a(|Fo ∗ IΛk |2). (6.22)

Thus, we obtain the oriented histogram for all filters as a |O|-vector,

H(IΛk) = (H1, ...,H|O|). (6.23)

It measures the strengths in all orientations.
3. Calculating responses on flat patch. By flat patch we mean image area that are void of structures,

especially edges. Thus filters have near-zero responses. They are helpful for suppressing false alarms in
cluttered areas. As a texture-less measure, we choose a few small filters ∆flt = {∇x,∇y, LoG} and further
compress the texture histogram into a single scalar,

H(IΛk) =
∑
F∈∆flt

∑
(x,y)∈Λk

b(|Fo ∗ IΛk |2). (6.24)

b() is a function that measures the featureless responses. It takes the form of a sigmoid function like
S() but with different shape parameters. In Figure ?? we plot the four functions a(), b(),1() and S() for
comparison.

Then the flatness response is defined as,

rflt(IΛk) = S(H(IΛk)− h). (6.25)

In the above h = 0 is a scalar for flatness prototype.
4. Calculating responses on color. The chromatic descriptors are informative for certain object cate-

gories. Similar to orientation histogram, we calculate a histogram Hclr(IΛk) on the color space (we use the
2D HS-space in the HSV format). Then the color patch response is defined as the saturated distance between
the color histogram of the observed image and the prototype histogram h,

rclr(IΛk) = S(‖Hclr(IΛk)− h‖2). (6.26)

In summary, a HIT template consists of K prototypes {Bk or hk, k = 1, · · · ,K} for sketch, tex-
ture/gradient, flatness, and color patches respectively which define K-subspaces (or ε-balls) Ω(BK) or
Ω(hk) of varying dimensions. These ε-balls quantize the image space with different metrics. An input
image I on lattice Λ is then projected to the HIT and is represented by a vector of responses:

I→ (r1, r2, ..., rK)

where rk is a soft measure for whether the image patch IΛk belongs to the subspace defined by the cor-
responding prototype. In the next section we will define a probability model on image I based on these
responses.

147

6.3.4 Template pursuit by information projection

We present an algorithm for learning the hybrid image templates automatically from a set of image examples.
It pursues the image patches, calculates their prototypes, and derive a probability model sequentially until
the information gain is within the statistical fluctuation – a model complexity criterion similar to AIC.

Let f(I) be the underlying probability distribution for an image category, and our objective is to learn a
series of models that approach f from an initial or reference model q,

q = p0 → p1 → p2 → · · · → pK ≈ f. (6.27)

These models sequentially match the observed marginal statistics collected from the samples of f . With
more marginal statistics matched between the model p and f , p will approach f in terms of reducing the
Kullback-Leibler divergence KL(f ||p) monotonically.

The main input to the learning algorithm is a set of positive examples

D+ = {I1, ..., In} ∼ f,

where f is the underlying target image distribution and ∼ means sampled from. For simplicity, we may
assume these images contain roughly aligned objects that can be explained by a common HIT template.
When this alignment assumption is not satisfied, we can adopt an EM-like iterative procedure with the
unknown object localization as missing data. We are also given a set of negative examples

D− = {J1, ...,JN} ∼ reference distribution q.

The negative examples are only used for pooling marginal histograms of one-dimensional feature responses
in a pre-computation step.

The image lattice Λ is divided into overlapping patches for multiple scales by a scanning window with
a step size about 10% of the window size. Then we calculate their corresponding prototypes and responses
for all images in D+. The sketch prototypes Bi are specified by the Gabor dictionary ∆, and the histogram
prototypes hk are obtained by computing the histograms for positive examples in the same region of template
lattice and then taking the average. As a result, we obtain an excessive number of candidate patches.

Ωcand = {Λj , `j , {Bj or hj} : j = 1, 2, ...,M}. (6.28)

From Ωcand, we will select the most informative patches and their corresponding prototypes for HIT.
By induction, at the k-th step, we have a HIT with k − 1 patches and a model p = pk−1:

HITk−1 = ({Λj , `j , Bj or hj , δj , j = 1, ..., k − 1}, Θk−1).

Consider a new candidate patch Λk in Ωcand and its responses on n positive examples and N negative
examples:

{r+
k,i, i = 1, ..., n} {r−k,i, i = 1, ..., N}. (6.29)

And let r̄+
k and r̄−k be the sample means on the two sets.

The gain of adding this patch to the template is measured by the KL divergence between the target
marginal distribution f(rk) and the current model pk−1(rk), as this represents the new information in the
training data that is not yet captured in the model. Among all the candidate patches, the one with the largest
gain is selected.

148

To estimate this gain, we use Monte-Carlo methods with samples from f(rk) and pk−1(rk). Obviously
{r+
k,i} is a fair sample from f(rk). While to sample from pk−1(rk), one may use importance sampling

on {r−k,i}, i.e. re-weighting the examples by pk−1(rk)
q(rk) . Here we simplify the problem by a conditional

independence assumption as stated in previous section. A feature response r1(IΛ1) is roughly uncorrelated
with r2(IΛ2) if one of the following holds: i) the two patches Λ1 and Λ2 have little overlap; ii) Λ1 and Λ2 are
from different scales. If at the k-th step we have removed from Ωcand all the candidate patches that overlap
with selected patches, then rk is roughly uncorrelated with all the previously selected responses r1, ..., rk−1.
As a result, pk−1(rk) = q(rk) and {r−k,i} can be used as a sample of pk−1(rk). The exact formula for
estimating the gain (i.e. KL divergence between f(rk) and pk−1(rk)) is given, once we have derived the
parametric form of p in the following.

For a selected patch Λk, the new model p = pk is required to match certain observed statistics (e.g. first
moment) while it should be also close to the learned model pk−1 to preserve the previous constraints.

p∗k = arg min KL(pk|pk−1) (6.30)

s.t. Epk [rk] = Ef [rk] (6.31)

By solving the Euler-Lagrange equation with Lagrange multipliers {λj} and γ,

∂

∂pk

{∑
I

pk(I) log
pk(I)

pk−1(I)
+ λk(Epk [rj]− Ef [rj])

+γ(
∑
I

pk(I)− 1)
}

= 0.

Thus we have,

pk(I) = pk−1(I)
1

zk
exp{−λkrk(I)}. (6.32)

zk = Eq [exp{λkrk(IΛk)}] is a normalizing constant. This can be estimated by the negative samples,

zk ≈
1

N

N∑
i=1

eλkr(Ji,Λk). (6.33)

λk is the parameter (Lagrange multiplier) to satisfy constraint in eqn (6.31),

Ep[rk] ≈
1

N

N∑
i=1

[
r(Ji,Λk)eλkr(Ji,Λk)

] 1

zk
= r̄+

k . (6.34)

In computation, we can look up r̄+
k in the table to find the best λk. The importance sampling is a good

estimation in calculating λk and zk because in our model r is one dimensional.
By recursion, we have a factorized log-linear form,

pK(I) = q(I)

K∏
j=1

[
1

zj
exp{λjrj(IΛj)}

]
. (6.35)

149

6.4 Example: vector fields for human hair analysis and synthesis

In this section, we demonstrate an example of applying primal sketch model to human hair analysis and
synthesis. Specifically, the hair images can be treated as 2D piecewisely smooth vector (flow) fields, and
thus the representation is view-based in contrast to the physically based 3D hair models in graphics. The
primal sketch model has three levels. The bottom level is the high frequency band of the hair image. The
middle level is a piecewisely smooth vector field for the hair orientation, gradient strength, and growth
directions. The top level is an attribute sketch graph for representing the discontinuities in the vector field. A
sketch graph typically has a number of sketch curves which are divided into 11 types of directed primitives.
Each primitive is a small window (say 5×7 pixels) where the orientations and growth directions are defined
in parametric forms. Besides the three level representation, the shading effects, i.e. the low-frequency band
of the hair image, are modeled by a linear superposition of some Gaussian image bases, and the hair color
is encoded by a color map. The inference algorithm is divided into two stages: compute the undirected
orientation field and sketch graph from an input image, and (ii) compute the hair grow direction for the
sketch curves and the orientation field using a Swendsen-Wang cut algorithm. Both steps maximize a joint
Bayesian posterior probability. This generative primal sketch model provides a straightforward way for
synthesizing realistic hair images and stylistic drawings (rendering) from a sketch graph and a few Gaussian
bases. The latter can be either inferred from a real hair image or input (edited) manually using a simple
sketching interface. Figure 6.8 shows an example.

(a) (b) (c) (d)

(e) (f) (g) (h)

(S,d)obsI
synV

syn

ΛskV

syn

HI obs obs

Y UV(I ,I)
rndJ

synI

Figure 6.8: Example of hair model and inference. (a) is an input color image, (b) is the computed sketch
with directions. (c) is the sketchable vector field generated from (b). (d) is the overall vector field after
filling-in non-sketchable part. (e) is the high frequency hair texture image generated from the vector field.
(f) is the shading and lighting image. (g) is the synthesized color image after adding the shading and color.
We render an artistic sketch in (h).

150

6.5 Relations between Primal Sketch and the HoG and SIFT Representa-
tions

In this section, we will draw some connections between the primal sketch and Histogram of Oriented Gra-
dients (HOG) and Scale-Invariant Feature Transfer (SIFT) representations, which was widely adopted in
computer vision as generic image features and object templates before deep neural networks.

Histogram of Oriented Gradients (HOG) is implemented by dividing the image window small spatial
regions ("cells"), for each cell accumulating a local 1-D histogram of gradient directions or edge orientations
over the pixels of the cell (Figure 6.9). The combined histogram entries form the representation. For better
invariance to illumination, shadowing, etc., it is also useful to contrast-normalize the local responses before
using them. This can be done by accumulating a measure of local histogram “energy” over somewhat larger
spatial regions ("blocks") and using the results to normalize all of the cells in the block. The connection
between HOG and primal sketch is as follows. If the cell happens to be a fine-scale stochastic texture
(like sky, wall, clothes, shading patch, with no visible sketchable structures), then keeping the histogram of
gradient is like the FRAME model for texture in the primal sketch. If the cell has visible structures, and thus
sketchable, its HOG histogram will be highly picked and thus dominated by 1-2 bins, we adopt an explicit
representation by the sketches (structure).

Figure 6.9: Feature extraction with histogram of oriented gradients (HOG).

Scale-Invariant Feature Transform (SIFT) transforms an image into a large collection of local feature
vectors, each of which is invariant to image translation, scaling, and rotation, and partially invariant to
illumination changes and affine or 3D projection. The scale-invariant features are efficiently identified by
using a staged filtering approach. The first stage identifies key locations in scale space by looking for
locations that are maxima or minima of a difference-of-Gaussian function. Each point is used to generate a
feature vector that describes the local image region sampled relative to its scale-space coordinate frame. The
features achieve partial invariance to local variations, such as affine or 3D projections, by blurring image
gradient locations. The resulting feature vectors are called SIFT keys. The SIFT keys derived from an
image are used in a nearest-neighbour approach to indexing to identify candidate object models. Figure
6.10 shows an example of object recognition with SIFT. The SIFT keys is an extension to keypoints in
images, like color or complex object patterns. It corresponds to a local sub-graph in the primal sketch, with
some scale invariance.

151

Figure 6.10: Recognition results by Scale-Invariant Feature Transform (SIFT). The right sub-figure shows
model outlines and image keys used for matching.

152

7

2.1D Sketch and Layered Representation

Primal sketch is a generic two-layer 2D representation in term of how image content is explained away with
respect to either explicit functions of basis functions or implicit functions of feature statistics. Primal sketch
seeks to decompose an image domain into the texton structural domain and the remaining texture domain.
In this chapter, we shall study how to decompose an input image into multiple layers with partial occluding
order relation inferred and the occluded contour completed if possible (Fig. 7.1). In the pioneering work,
the resulting representation is called the 2.1D sketch, by Nitzberg and Mumford [184], to bridge low-level
image primitives (including textons such as edges and junctions and texture atomic regions) and middle-
level Marr’s 2.5D sketch (to be presented in the next chapter), and termed layered image representation, by
Adelson and Wang [1, 246, 247], in image coding and motion analysis.

B

A

a1

a3 a4

b1

b5

b3

b6b4 b4

b1 b3b2

a4a3

b5

a1

b6

a2

(a) (b)

a2

b2

t3

t1 t2

t4

Figure 28: (a) A primal sketch configuration for a simple image. It has four primitives for ‘T’-junctions – t1, t2, t3, t4. It

is a planar graph formed by bonding the adjacent primitives. (b) A layered (2.1D sketch) representation with two occluding

surfaces. The four ‘T’-junctions are broken. The bonds are reorganized. a1 is bonded with a3, and a2 is bonded with a4.

(a) input image (b) curve completion at layer 2 (c) curve completion at layer 3

(d) layer 1 (e) layer 2 after fill-in (f) layer 3 after fill-in

Figure 29: From a 2D sketch to a 2.1D layered representation by reconfiguring the bond relations. (a) is an input image from

which a 2D sketch is computed. This is transferred to a 2.1D sketch representations with three layers shown in (d), (e) and (f)

respectively. The inference process reconfigures the bonds of the image primitives shown in red in (b) and (c). From [23]

behind the observed surfaces together with ‘occluded by’ relations. This is illustrated by Figure 27, (c). This

is a configuration which has duplicated three regions to represent missing parts of the background layer.

A mathematical model for the reconfigurable graph is called the mixed Markov model in [20]. In a mixed

Markov model, the bonds are treated as nodes. Therefore, the vertex set V of a configuration has two type

of nodes – V = Vx [Va. Vx include the usual nodes for image entities, and Va is a set of address nodes, for

example, the bonds. The latter are like the pointers in the C language. These address nodes reconfigure the

graphical structure and realize non-local relations. It was shown that a probability model defined on such

reconfigurable graphs still observes a suitable form of he Hammersley-CliÆord theorem and can be simulated

34

Figure 7.1: Illustration of the 2.1D sketch and layered image representation. From a 2D sketch to a 2.1D
layered representation by reconfiguring the bond relations between regions in different layers. (a) is an input
image from which a 2D primal sketch is computed. This is transferred to a 2.1D sketch representations with
three layers shown in (d), (e) and (f) respectively. The inference process reconfigures the bonds of the image
primitives shown in red in (b) and (c).

153

In practice, the idea of layered representation has been widely used for image manipulation in image
editing software such as Adobe’s Photoshop (for example, adding text to an image, or adding vector graphic
shapes, or applying a layer style to add a special effect such as a drop shadow or a glow). In the literature of
computer vision, the 2.1D sketch or layered image representation has also been studied from other perspec-
tives including line drawing interpretations [161,244], segmentation [61,235], occlusion recovery [213,250],
contour illusory and completion [60, 105, 119, 199, 245], and figure-ground separation [200, 226].

The 2.1D sketch stems from the figure-ground separation/organization problem, a type of perceptual
grouping contributed to visual object recognition. In Gestalt psychology, the figure-ground separation prob-
lem is usually posed as identifying a figure (such as the two girls in Fig. 7.1) from the background (such as
the dancing practice room in Fig. 7.1). Computing the figure-ground organization of an input image can help
resolve perceptual ambiguities in for example the face-vase and martini-bikini drawings. The 2.1D sketch
captures the partial occluding order between multiple object surfaces/generic regions in a scene, represent-
ing the rank information of relative depth among them, and thus providing a critical representation scheme
for addressing the multistable perception phenomenon in vision.

In this chapter, we focus on the problem of computing the 2.1D sketch from a monocular image under
the variational formulation framework, the energy minimization framework and the Bayesian inference
framework respectively.

7.1 Problem Formulation

In this section, we introduce the notation and present a high-level formulation. We will elaborate on different
components in sections followed.

Denote by D an image domain and I an image defined on the domain D. To infer the 2.1D sketch, we
will build up a three-layer model from the input image I , to its 2D representation, denoted by W2D and to
the 2.1D sketch, denoted by W2.1D. We have,

I ⇒ W2D ⇒ W2.1D. (7.1)

W2D represents a set of 2D elements to be layered, which can be 2D atomic regions or 2D curves and
curve groups, as well as the associated attributes if needed in inference. For example, if we only consider
2D regions, we have,

W2D = {n, (Ri, li, θi)ni=1}, (7.2)

which consists of n regions,Ri, each of which is represented by a region model indexed by li in a predefined
model family with parameters θi.

ba

c

d

e

f

Figure 7.2: A Hasse diagram for a partial order relation

W2.1D represents a set of surfaces, their partial occluding order and contours used to complete regions in
different surfaces. A surface consists of one 2D region or more than one 2D region with completed contours.

154

Any 2D region in W2D belongs to one and only one surface in the layered representation. We have,

W2.1D = {m, {Si}mi=1,PR} (7.3)

which consists of m surfaces (m ≤ n) and ∪iSi = D. PR represents the partial occluding order between
the set of m surfaces. Consider a set A = {a, b, c, d, e, f}, we define a partially ordered set, poset [223],
PR = 〈A,�〉. b � c means that surface b occludes surface c or b is on top of c. PR is represented by a
directed acyclic graph (DAG) called a Hasse diagram. Figure 7.2 shows an example of the Hasse diagram
for PR = {〈a, b〉, 〈b, d〉, 〈a, d〉, 〈a, c〉, 〈c, d〉, 〈e, f〉} on the set A.

Denote the “visible” portion of a surface Si by,

S′i = Si \ ∪Si�SjSj . (7.4)

Then, the recovered curve(s) in the surface Si can be defined by,

Ci = ∂Si \ ∂S′i. (7.5)

SomeCi’s may be empty. For example, the front most surface does not have occluded parts and the occluded
parts in the background are usually left open.

To infer the 2.1D sketch, we will study two different formulations which cast the inference under the
energy minimization framework and under the Bayesian framework respectively. In either case, there are
two different assumptions:

• Assume the 2D representation W2D has been computed already and will be fixed in the inference of
the 2.1D sketch. This is typically adopted in the literature.

• Compute the 2D representation W2D and the 2.1D sketch W2.1D jointly. This leads to much larger
search space and usually entails more powerful search algorithms such as DDMCMC [237].

7.2 The Variational Formulation by Nitzberg and Mumford

In their seminal work [184], Nitzberg and Mumford proposed a variational formulation for inferring the 2.1D
sketch extended from the Mumford-Shah energy functional [177]. This belongs to the energy minimization
framework and we briefly introduce the formulation in this section.

7.2.1 The Energy Functional

We first overview the Mumford-Shah energy functional for low-level image segmentation. It is a piece-wise
smooth model that aims to segment an image into as few and simple regions as possible while keeping the
color of each region as smooth and/or slowly varying as possible. The functional is defined such that it takes
its minimum at an optimal piece-wise smooth approximation to a given image I defined on the domain D.
An approximation function, denoted by f , is smooth except at a finite set Γ of piece-wise contours which
meet the boundary of the image domain, ∂D, and meet each other only at their endpoints. So, the contours
of Γ segments the image domain into a finite set of disjoint regions, denoted by R1, · · · , Rn, i.e. , the
connected components of D \ Γ. The Mumford-Shah functional is defined to measure the match between
an image I and a segmentation f,Γ:

EM−S(f,Γ|I) = µ2

∫
D

(f − I)2dx+

∫
D\Γ
||∇f ||2dx+ v

∫
Γ
ds (7.6)

155

where in the right hand side the first term measures how good f approximates I , the second asks that f
vary slowly except at boundaries, and the third asks the set of contours be as short, and hence as simple and
straight as possible.

Similar in spirit to the Mumford-Shah functional, Nitzberg and Mumford proposed a energy functional
that achieves a minimum at the optimal overlapping layering of surfaces. For simplicity, assume Si is
a closed subset of D with piece-wise smooth boundary and connected interior. The energy functional is
defined by:

E2.1D({Si},PR|I) =

n∑
i=1

{µ2

∫
S′i

(I −mi)dx+ ε

∫
Si

dx+

∫
∂Si\∂D

φ(κ)ds} (7.7)

where mi is the mean of the image I on S′i and κ is the curvature of the boundary ∂Si. The function
φ : R→ R is defined by,

φ(κ) =

{
v + ακ2, for |κ| < β/α

v + β|κ|, for |κ| ≥ β/α
(7.8)

The functional above can only address inferring the 2.1D sketch from simple input images, which is a
reasonable assumption in the early day of computer vision. First, the model does not allow self-overlapping
“woven” surfaces such as what a garden hose would project, nor folded surfaces such as that produced by
an image of a sleeve whose edge disappears around the back of an arm. Second, the model is piece-wise
constant with a constant mean being used for the surface model. Third, transparency and shadows are not
handled. We will study more expressive models with more powerful inference algorithms for handling those
issues frequently observed in modern real images.

7.2.2 The Euler Elastica for Completing Occluded Curves

To recover the occluded curves, Nitzberg and Mumford adopted the Euler Elastica method to interpolate
them. Suppose a surface Si disappears behind occluding objects at a point P0 ∈ ∂Si and reappears at P1.
Let t0 and t1 be the unit tangent vectors to ∂Si at P0 and P1 respectively. Then, computing the occluded
curve Ci between P0 and P1 is posed as a minimization problem:

E(Ci|Si, P0, t0, P1, t1) =

∫
Ci

(v + ακ2)ds (7.9)

Computationally, the simplest way to solve the Elastic seems to be hill-climbing. It starts with a con-
venient chain x0 = P0, x1, · · · , xN = P1 of points for which x1 − x0 ∝ t0 and xN−1 − xN ∝ t1. Xi’s
(i = 1, · · · , N − 1) are computed by letting them evolve to decrease the Elastica functional.

7.3 The Mixed Markov Random Field Formulation

In this section, we address the 2.1D sketch problem with the mixed Markov Random Field (MRF) repre-
sentation and under the Bayesian inference framework. We consider 2D image regions only as layering
primitives. As illustrated in Figure 7.3, given the set of segmented regions (in different colors) of an input
image, our objective consists of two components: region layering or coloring to divide the set of regions
into an unknown number of layers, and contour completion to recover the occluded contours between re-
gions in the same layer. In addition, we will also fit the probability models of regions in different layers
and preserve multiple distinct interpretations accounting for the intrinsic ambiguities if needed. Two key
observations in modeling and computing the 2.1D sketch problem are as-follows.

156

R2

a1

a4

R4

a2

a3

R3

a7

a8

R5

a5

a6

R1

R6

R1

R2

R3

R4

R5

R6

a4

a1

a8

a5

a7

a6

a2

a3

（a） （b）

Figure 7.3: A simple example of the 2.1D sketch and the mixed MRF modeling. (a) is a set of 2D regions
to be layered, (b) is the initial reconfigurable graph with mixed MRF including two types of nodes, region
nodes and terminator nodes. See text for details.

i) Long range interactions between 2D regions. In order to determine which 2D regions are in the same
layer and to complete the contour of occluded parts, long range interactions are entailed, which imposes
different requirements in modeling than traditional local relation modeling using Markov Random Field
(MRF) models. Consider region 3 and 5 in Figure 7.1. Whether they should merge into a single surface or
should remain independent in the same layer depends on their compatibility across long range interactions.

ii) Dynamic neighborhood system. In the contour completion process, given a current layering assign-
ment, the neighborhood of any end point on an occluded contour looking for its corresponding point is
constrained to match among the set of points in the same layer. This means the neighborhood system
changes according to different layering assignments at each step in the inference, which is different from
the fixed neighborhood system in the traditional MRF.

The two properties stated above lead traditional MRFs to fail to model the 2.1D sketch problem and call
for new methods, such as the mixed Markov random field [68, 69] to be used in this chapter. Both MRF
and mixed MRF can be presented by graphical models. A mixed MRF differs from traditional MRFs in its
definition of its neighborhood system, which is static in the latter, but is dynamic in the former due to the
introduction of a new type of nodes in the graph. Concretely speaking, a mixed MRF has the following two
characteristics:

i) Nodes are inhomogeneous with different degrees of connections, which are inferred from images
on-the-fly.

ii) The neighborhood of each node is no longer fixed but inferred as open bonds or address variables,
which reconfigures the graph structure.

Following Eqn. 7.1, we adopt a three-layer generative image model consisting of the input image, the 2D
representation, and the 2.1D sketch. We use 3-degree-junctions such as T-junctions, Y-junctions or arrow
junctions as cues for occlusion. The 2D representation consists of a set of 2D regions (seeR1, R2, · · · , R6 in
Figure 7.3 (a)) and a set of terminators (see a1, a2, · · · , a8) broken from detected T-, Y-, or arrow junctions
during the process of layering and, if possible, to be completed in the inferred layered representation. So, in
the graphical representation (see Figure 7.3 (b)), there are two types of nodes: one is the region nodes and
the other terminator nodes. Region nodes constitute the region adjacency graph to be partitioned during the

157

(x , y)

(a) (b)

(c)

a1 a2

Figure 7.4: The open bounds or address variable. A T-junction is shown in (a), it is broken into a terminator
in (b) as an open bound described as an address variable including location (x, y), orientation of the termi-
nator and appearance information inherited from the region it belongs to; (c) is the Elastica computed using
two terminators in the process of contour completion.

process of layering. The terminator nodes make the graph reconfigurable since the neighborhood system of
terminator nodes is not static and depends on the current assignment of layering. For such reconfigurable
graphical models, it has been shown that a probability model defined on them still observes a suitable form
of the Hammersley-Clifford theorem and can be simulated by Gibbs sampling [68].

7.3.1 Definition of W2D and W2.1D

For the clarity of presentation, we mainly focus on inferring the 2.1D sketch with the 2D representation
given and fixed.

The 2D representation. W2D consists of a set of 2D regions, VR, and a set of 3-degree-junctions, VT ,
such as T-, Y-, or arrow junctions:

W2D = (VR, VT) (7.10)

VR = (R1, R2, ..., RN) (7.11)

VT = (T1, T2, ..., TM) (7.12)

VR is the regions set, which can be many atomic regions or composed of a few image patches. VT consists
of those junctions selected from the detected 3-degree-junctions [251] that are assigned to the corresponding
regions.

Open bonds or address variables. 3-degree-junctions will be broken into a set of terminators, illus-
trated in Fig. 7.4 (a) and (b) for a T-junction, as the open bonds, or address variables, VB , of corresponding
regions during the inference. The open bonds are like pointers to regions, initially kept open but to be as-
signed an address variable and completed during inference. In practice, each bond has a set of attributes,
AB , including those belonging to itself and those inherited from the region. These attributes often include
geometric transformation features, such as location, orientation, and, length, and some appearance features
such as features computed from region models. They are used to test the compatibility of any two bonds,
deciding whether or not to link together. Often, besides the foreground and background regions, each region
has two or more (assumed no more than m ≤ M) open bonds with their ownership defined, denoted as
B(Ri), ∀i ≤ N .

VB = (a1, a2, ..., aM) (7.13)

158

AB = (Aa1, Aa2, ..., AaM), ai ∈ VB,∀i ≤M (7.14)

B(Ri) = (ai1, ai2, ..., aim), aij ∈ VB, ∀i ≤ N, ∀j ≤ m (7.15)

Generative models of regions. We adopt generative models for each region. Let R ⊂ Λ denote a
2D region and IR the intensities in R or color values in (r, g, b) color space. The model assumes constant
intensity or color value with additive noise η modeled by a non-parametric histogram H . The model can be
learned off-line and more sophisticated models can easily be added into the algorithm.

J(x, y, θ) = µ, IR(x, y) = J(x, y, ; θ) + η, η ∼ H (7.16)

With a slight abuse of notation, we denote the parameters used in a region by θ = (µ,H). Here µ is the
mean of a region R or a connected component CP . The likelihood probability is

p(IR|R, θ) ∝
∏

(x,y∈R)

H(IR(x, y)− J(x, y, θ)) (7.17)

The prior for a regionR assumes short boundary length ∂R. This is to encourage smoothness, and a compact
area ‖R‖,

p(R) ∝ exp{−γr|R|ρ −
1

2
λ|∂R|} (7.18)

where ρ and λ are fixed constants and γ is a fixed scale factor for regions.
Terminator representation and the Elastica. When a terminator ai is broken from a junction, it is

represented by its attributes Aai = (x, y; ori, κ, pf), where (x, y) is location, ori the orientation of the
terminator, κ the curvature, and pf the profile or some attributes inherited from the region.

Given two terminators, ai and aj , the contour to be completed between them, denoted by Γ∗, is decided
by minimizing the Elastica cost function in a contour space ΩΓ [110, 130, 177, 184]

Γ∗ = arg min
Γ∈ΩΓ

E(Γ; ai, aj)

= arg min
Γ∈ΩΓ

∫
Γ
[(ν1 + α1κ

2
1) + (ν2 + α2κ

2
2)]ds

(7.19)

where κ1 is the curvature of a1, κ2 is the curvature of a2, ν1 and ν2 are constants, and α1 and α2 are scalable
coefficients. The parameters ν1, ν2, α1 and α2 are learned from an image data set [266].

The 2.1D sketch. W2.1D is represented by a set of labels, X , for the layer information of regions and
a set of variables, Y , describing address variable assignments. Both of them are inferred from the image.
In addition, according to the layering labels and assignments of address variables, a set of surfaces, Sf , is
formed which consists of one or more regions merged through a set of recovered contours, Ct.

W2.1D = (X,Y ;Sf , Ct) (7.20)

X = (xR1 , xR2 , ..., xRN) (7.21)

Y = (ya1 , ya2 , ..., yaM) (7.22)

where xRi ≤ K, ∀i ∈ [1, N], yaj ∈ VB , aj ∈ VB , ∀j ∈ [1,M], K is an unknown number of layers to be
inferred.

X represents the partition of VR intoK layers with the partial occlusion relations represented in a Hasse
diagram along with Y . The assignments among address variables indicate to whom the open bonds ai are
connected or assigned. Each terminator has the same label for its layer information as the region to which it
is assigned.

159

Because the surface is merged from regions so that its generative model includes two constraints: one
is appearance defined as the region model and the other shape constrained by some generic shape priors
(Elastica in this chapter) or some specific object templates. Recovered contours are computed using the
Elastica based on the results of assignments.

7.3.2 The mixed MRF and Its Graphical Representation

Given the 2D representation defined above, there are two kinds of nodes in its graphical representation:
region nodes (the nodes found in a traditional MRF) and terminator nodes (a newly introduced set of address
nodes). Terminator nodes are dynamically broken from 3-degree-junctions in the process of region layering,
which means that their neighborhood systems are determined on the fly. According to the discussion stated
above, we know that this will build up a reconfigurable graph with a mixed MRF as illustrated in Figure 7.3
(b). We clarify some definitions in this section.

Let G = 〈V,E〉 be the graph for the 2D representation, where V = VR ∪ VB is the set of vertices and
E = ER ∪ EB the set of edges. ER is the set of edges linking regions into a region adjacency graph and
EB is the dynamic set of edges linking open bonds.

The edges decide the topology of the graph, and can link, generally speaking, any two vertices. In a
mixed MRF, the introduction of address variables makes the neighborhood system dynamic and different
from traditional graphical models.

A mixed MRF can be defined in the same way that an MRF is defined as a probability distribution that
is factorized into a product of local terms, the only difference being in what “local” means after introducing
address variables. The idea of “locality” in a mixed MRF can handle long range interactions through open
bonds, meaning that a clique denoted by C in a mixed MRF may contain both standard region nodes and
address nodes.

Definition 1. Mixed neighbor potential. Let C denote the set of cliques in G. A family of nonnegative
functions λC : C ∈ C is called a mixed neighbor potential if for any pair of configurations x and y,
xC = yC and xxa = yya ,∀a ∈ C

⋂
VB . Thus a mixed potential function λC depends on both the values of

the standard nodes in C and that of those pointed to by open bonds in C.
Definition 2. Mixed Markov random field. A probability distribution P defined on G is a mixed MRF if

P can be factorized into a product of mixed potential functions over the cliques: P (I) ∝∏C∈C λC(IC , IIC),
where IIC is the vector of states of those standard variables pointed to from within the clique C.

Equivalence between the mixed MRF and the Gibbs distribution. It was shown that the originally
established equivalence between MRFs and the Gibbs distribution by Hammersley-Clifford theorem, is also
applicable for mixed MRFs so that the probability models defined on a mixed MRF can be simulated by
Gibbs sampling [68] or SW-cuts [8] according to A.Fridman’s proof in [68].

Given a region Ri, its neighborhood is:

N(Ri) = Nadjacency(Ri) ∪Npointer(Ri) (7.23)

whereNadjacency(Ri) = {Rj : ∀Rj ∈ VR is adjacent toRi} represents the usual definition of a neighborhood
found in MRF models and defines an adjacency graph. At the same time, open bonds of Ri will cause it to
link to those regions which are not locally adjacent, that is,Npointer(Ri) = {Rj : B(Rj) andB(Ri) are connected}.
Then ER is:

ER = {〈Ri, Rj〉,∀Ri ∈ VR and Rj ∈ N(Ri)} (7.24)

Given an open bond ai ∈ VB , its neighborhood is:

N(ai) = {aj : aj and ai are in the same layer} (7.25)

Hence EB = 〈ai, aj〉,∀ai ∈ VT and aj ∈ N(ai). At the initial stage, all the open bonds are open.

160

7.3.3 Bayesian formulation

In the Bayesian framework, the three-layer model in the Eqn. 7.1 is described as

p(I,W2D,W2.1D) = p(I|W2D,W2.1D)p(W2D|W2.1D)p(W2.1D) (7.26)

where p(I|W2D,W2.1D) is the likelihood model. We want to maximize the posterior joint probability of
W2.1D given W2D in a solution space ΩW2.1D

W ∗2.1D = arg max
ΩW2.1D

p(W2.1D|W2D; I)

= arg max
ΩW2.1D

p(W2.1D|W2D)p(W2.1D)
(7.27)

A Graph Partition Perspective. Given the graphical representation G defined with a mixed MRF, we
are interested in a partitioning, or coloring, of the vertex, i.e. , V = VR∪VB , inG. An n-partition is denoted
by

πn = (V1, V2, ..., Vn),
n⋃
i=1

Vi = V, Vi
⋂
Vj =, ∀i 6= j (7.28)

Each subset Vi, i = 1, 2, ..., n (that is a surface in 2.1D representation) is assigned a color ci which represents
its model. For region nodes, this model consists of layering information and for open bonds the model
consists of the connected contours. Let Ωπn(πn ∈ Ωπn) be the space of all possible n-partitions of V , Ωlr

the set of types of region models, Ωθr the model parameter family, Ωlc the set of types of Elastica, and Ωθc

the Elastica parameter space. Thus, the solution space for W2.1D is

Ω =
N⋃
n=1

{Ωπn × Ωn
lr × Ωθr1 × ...× Ωθrn × Ωn

lc × Ωθc1 × ...× Ωθcn} (7.29)

This leads us to extend the Swendsen-Wang cuts algorithm [8] to perform the inference. In the formulation,
the prior model is

p(W2.1D) = p(K)p(X)p(Y)
N∏
i=1

p(Ri) (7.30)

where p(K) is an exponential model p(K) ∝ exp(−λ0K), p(X) =
∏N
i=1 p(XRi) and

p(Y) ∝ exp−β0
∑
∀ai,aj ,i 6=j 1(yai = yaj) penalize the situation that more than one terminator is assigned

to the same junction and p(Ri) defined in Eqn. 12.51.
The likelihood model is

p(W2D|W2.1D) ∝
K∏
i=1

K(i)∏
j=1

∏
(x,y)∈sj

H(I(x, y)− J(x, y; θj))

×
M∏
i=1

exp{−λ0E}

(7.31)

where J(x, y; θj) is defined in Eqn. 7.16 and λ0 is a scalable factor and also learned from the data set [266].
The first term in the likelihood model handles the region coloring/layering problem, and the second term
handles the contour completion problem. They are solved jointly.

161

Figure 7.5: A running example of inferring the 2.1D sketch. (a) is the original image, Kanizsa figure. (b)
is the sketch graph computed by the primal sketch model after interactively labeling. There are 8 atomic
regions and 12 terminators broken form T-junctions. (c) is the 2.1D sketch. There are 4 layers and the
contour completion is performed using Elastica rules. (d) is the Hasse diagram for partial order relation,
such as 〈7, 1〉 means region 7 occludes region 1. (e) is the graph representation with mixed Markov random
field. Each big circle denotes a vertex of atomic region, each blue bar denotes one terminator, each little
circle denotes a vertex of open bound described as address variable. Each region may have two or more
terminators. The blue line segments connect the two neighboring regions. The red two-way arrows connect
two terminators and each terminator is assigned another terminator’s address variable.

The Inference Algorithm. Based on the graphical representation with a mixed MRF, the presented
inference algorithm proceeds in two ways (1) region coloring/layering based on the Swendsen-Wang Cuts
algorithm [8] for the partitioning of the region adjacency graph to obtain partial occluding order relations; (2)
address variable assignments based on Gibbs sampling for the completion of open bonds. The basic goal is
to realize a reversible jump between any two successive states π and π0 in terms of the Metropolis-Hastings
method.

7.3.4 Experiments

We first demonstrate the inference algorithm using the Kanizsa image. Figure 7.5 shows the 2D representa-
tion and the graphical representation with mixed MRF. Figure 7.6 shows the inference procedure.

7.4 The 2.1D Sketch with Layered Regions and Curves

In this section, we handle images with both regions and curves which are frequently observed in natural
images as illustrated in Figure 7.7. Given an input image, our objective is to infer an unknown number

162

Figure 7.6: Illustration of the Gibbs inference procedure. Each red node denotes a region, the black line
segment denotes terminator, and the green line segment shows the inferred connection or assignment of
address variables. Inference starts from a initial temperature T = 20, (a) ∼ (h) are the results in different
temperatures. After T = 1, the result is right as in the figure.

163

Figure 7.7: Illustration of the 2.1D sketch with layered representation of regions and curves. (a) is an input
image which is decomposed into two layers – (b) a layer of regions and (c) a layer of curves. These curves
are further divided into (d) free curves, (e) a parallel curve group for the fence, and (f) trees. Curves observe
a partial order occlusion relation.

of regions, free curves, parallel groups, and trees, with recovered occlusion relation and their probability
models selected and fitted—all in the process of maximizing (or simulating) a Bayesian posterior probability.
This algorithm searches for optimal solutions in a complex state space which contains a large number of
subspaces of varying dimensions for the possible combinations of regions, curves, and curve groups.

7.4.1 Generative models and Bayesian formulation

In this section, we present generative models for both regions and curve structures.

Generative models of curves

We consider three types of curve models which are illustrated in Figure 7.8 and described as-follows.
1. Free curves. A free curve, denoted by C, is represented by its medial axis cm(s) = (xm(s), ym(s))

and its width 2w(s) for s = [0, L]. L is the curve length. In a continuous representation, a free curve C oc-
cupies an elongated area or domainD(C) bounded by the left and right side boundaries denoted respectively
by cl(s) = (xl(s), yl(s)) and cr = (xr(s), yr(s)). Fig. 7.8 (a) shows the boundaries in dashed lines.

cl(s) = cm(s)− w(s)n(s), cr(s) = cm(s) + w(s)n(s), (7.32)

where n(s) is the unit normal of cm(s). Intuitively, a curve is a degenerated region parameterized by its 1D
medial axis. Usually w(s) is only 1 − 3 pixels wide and w << L. This causes major topology problems
in image segmentation where the two boundaries cl(s) and cr(s) could often intersect generating numerous
trivial regions. This problem will be resolved with the explicit 1D representation. The intensities of a curve

164

(a) free curve (b) discretized curve (c) parallel group (d) tree

Figure 7.8: Representations of curves and curve groups. (a) A free curve in continuous representation. (b)
A free curve is discretized into a chain of “bars”. (c) Curves for a parallel group. (d) Curves for a Markov
tree.

often exhibit globally smooth shading patterns, for example the curves in Figure 7.8. Thus we adopt a
quadratic function for curve intensities,

J(x, y; θ0) = ax2 + bxy + cy2 + dx+ ey + f, (x, y) ∈ D(C), (7.33)

with parameters θ0 = (a, b, c, d, e, f). The validation of choosing an inhomogeneous model to capture the
smoothly changing intensity patterns can be found in [237]. Therefore, a free curve is described by the
following variables in continuous representation

C = (L, cm(s)Ls=0, w(s)Ls=0, θ0, σ). (7.34)

where σ is the variance of the intensity noise. While this continuous representation is a convenient model,
we should also work on a discrete representation. Then the domain D(C) is a set of pixels in a lattice and
C is a chain of elongated bars as Figure 7.8 (b) illustrates.

The prior model for p(C) prefers smooth medial axes, narrow and uniform width, and it also has a term
for the area of the curve in order to match with the region prior.

p(C) ∝ p(D(C))p(c(s))p(w(s)) ∝ e−E(C). (7.35)

The energy E(C) is the sum of three terms

E(C) = γc|D(C)|ρ + λL+ Eo(w), (7.36)

where ρ, λ are constants and are fixed in our experiments, and γc is a scale factor that can be adjusted to
control the number of curves. Eo(w) is a term which constrains width w(s) to be small. We denote the
intensities inside the curve domain by ID(C), and assume the reconstruction residue follows iid Gaussian
N (0;σ2). The image likelihood therefore is

p(ID(C)|C) =
∏

(x,y)∈D(C)

N (I(x, y)− J(x, y; θ0);σ2). (7.37)

2. Parallel curve groups. A parallel curve group consists of a number of nearly parallel curves as
Fig. 7.8 (c) shows. Each curve Ci, i = 1, 2, ..., n is summarized by a short line segment connecting its end
points. They represent curve structures, such as zebra stripes, grids, and railings shown in the experiments.
Grouping curves into a parallel group is encouraged in the model as it reduces coding length and it is useful
for perceiving an object, for example, a zebra. We denote a parallel curve group by

pg = (n, {C1, C2, ..., Cn}, {α1, α2, ..., αn}), (7.38)

165

αi ∈ {1, ..., n} is the index to the curve preceding Ci in the chain.
The prior model for a pg is a first order Markov model in a Gibbs form with a singleton energy on

individual curve and a pair energy for two consecutive curves as

p(pg) ∝ exp{−λ0n−
n∑
i=1

E(Ci)−
n∑
i=2

Epg(Ci, Cαi)}. (7.39)

The singleton E(Ci) is inherited from the free curve model. For the pair energy, we summarize each
curve Ci by five attributes: center (xi, yi), orientation θi of its associate line-segment, and length Li of
the line segment, curve average width (thickness) w̄i, and average intensity µi. Epg(Ci, Cαi) measures the
differences between these attributes.

3. Markov trees. Figure 7.8 (d) shows a number of curves in a Markov tree structure. We denote it by

T = (n, {C1, C2,, Cn}, {β1, β2, ..., βn}). (7.40)

βi ∈ {1, ..., n} is the index to the parent curve of Ci. Thus the prior probability is

p(T) ∝ exp{−λ0n−
n∑
i=1

E(Ci)−
∑
αi 6=∅

ET (Ci, Cβi)}. (7.41)

Again, E(Ci) is inherited from the free curve. The term for Ci and its parent Cαi , ET (Ci, Cαi), measures
the compatibility such as end-point gap, orientation continuity, thickness, and intensity between the parent
and child curves.

The parallel group pg and tree T inherit the areas from the free curve, thus

D(pg) = ∪ni=1D(Ci), and D(T) = ∪ni=1D(Ci). (7.42)

It also inherits the intensity function J(x, y; θi) from each free curve Ci, i = 1, 2, ..., n. In summary, the
intensity models for C, pg, T are all generative for image I as

I(x, y) = J(x, y; θ) +N (0;σ2), (x, y) ∈ D(Ci),D(pg), or D(T). (7.43)

Generative models of regions

Once the curves explain away the elongated patterns, what is left within each image are the regions in the
background. We adopt two simple region models in comparison to the four models in [237]. We denote a
2D region by R ⊂ D and IR the intensities inside R.

The first model assumes constant intensity with additive noise modeled by a non-parametric histogram
H.

J(x, y; 1, θ) = µ, I(x, y) = J(x, y) + η, η ∼ H, (x, y) ∈ R. (7.44)

With a slight abuse of notation, we denote by θ = (µ,H) the parameters used in a region.
The second model assumes a 2D Bezier spline function with additive noise. The spline accounts for

global smooth shadings.

J(x, y; 2, θ) = B′(x)MB(y), I(x, y) = J(x, y; θ2) + η, η ∼ H, (x, y) ∈ R. (7.45)

where B(x) = ((1 − x)3, 3x(1 − x)2, 3x2(1 − x), x3) is the basis and M is a 4 × 4 control matrix. This
is to impose an inhomogeneous model for capturing the gradually changing intensity patterns, e.g. , the

166

sky. This model is important since regions with shading effects will be segmented into separate pieces with
homogeneous models. The parameters are θ = (M,H) and more details with a validation can be found
in [237] where we compare different models for different types of images.

The likelihood probability is

p(IR|R, θ) ∝
∏

(x,y)∈D(R)

H(I(x, y)− J(x, y; `, θ)), ` ∈ {1, 2}. (7.46)

The prior for a region R assumes short boundary length ∂R (smoothness) and compact area |D(R)|,

p(R) ∝ exp{−γr|D(R)|ρ − 1

2
λ|∂R|}, (7.47)

where ρ and λ are constants that are fixed for all the experiments in this section, and γr is a scale factor that
can be adjusted to control the number of regions in the segmentation.

7.4.2 Bayesian formulation for probabilistic inference

Given an image I, our objective is to compute a representation of the scene (world W) in terms of a number
of regions W r, free curves W c, parallel curve groups W pg, trees W t, and a partial order PR. We denote
the representation by variables

W = (W r,W c,W pg,W t,PR). (7.48)

The region representationW r includes the number of regionsKr, and each regionRi has a label `i ∈ {1, 2}
and parameter θi for its intensity model

W r = (Kr, {(Ri, `i, θi) : i = 1, 2, ...,Kr}). (7.49)

Similarly, we haveW c = (Kc, C1, ..., CKc),W pg = (Kpg, pg1, pg2, ..., pgKpg), andW t = (Kt, T1, T2, ..., TKt).
In this model, there is no need to define the background since each pixel either belongs to a region or is ex-
plained by a curve/curve group.

The problem is posed as Bayesian inference in a solution space Ω.

W ∗ = arg max
W∈Ω

p(I|W)p(W). (7.50)

By assuming mutual independence between W r,W c,W pg,W t we have the prior model

p(W) =
(
p(Kr)

Kr∏
i=1

p(Ri)
)(
p(Kc)

Kc∏
i=1

p(Ci)
)(
p(Kpg)

Kpg∏
i=1

p(pgi)
)(
p(Kt)

Kt∏
i=1

p(Ti)
)
. (7.51)

The prior for individual p(R), p(C), p(pg), p(T) are given in the previous subsections.
As there are N curves in total including the free curves, and curves in the parallel groups and trees, then

the likelihood model follows the lattice partition and Eqn. 7.37 and 7.46.

p(I|W) =
Kr∏
i=1

∏
(x,y)∈DRi

H((I(x, y)− J(x, y; `i, θi)) ·
N∏
j=1

∏
(x,y)∈DCj

N ((I(x, y)− J(x, y; θj);σ
2
j). (7.52)

Since all objects use generative models for reconstructing I, these models are directly comparable and they
compete to explain the image. This property is crucial for the integration of region segmentation and curve
grouping.

167

The Inference Algorithm. Here we briefly summarize the design of the algorithm. The goal is to
design an algorithm to make inference of the W ∗ which maximizes the posterior p(W |I) by sampling W
in the solution space with a fast simulated annealing procedure. Since W ∗ is usually highly peaked, we
hope that it will most likely be sampled if the algorithm converges to the target distribution. This poses
rather serious challenges even though we have simplified the image models above. The main difficulty is to
deal with objects with different structures and explore a large number of possible combinations of regions,
curves, and curve groups in an image. Especially our objective is to achieve automatic and nearly globally
optimal solutions. The following are three basic considerations in our MCMC design.

Firstly, the Markov chain should be irreducible so that it can traverse the entire solution space. This
is done by designing a number of pairs of jumps to form an ergodic Markov chain. The resulting Markov
chain can reach any states from an arbitrary initialization.

Secondly, each jump operates on 1−2 curves or curve elements. We study the scopes of the jumps within
which the algorithm proposes the next state according to a conditional probability. This is like a Gibbs
sampler. The proposal is then accepted in a Metropolis-Hastings step, hence its name, the Metropolized
Gibbs Sampler (MGS [156]).

Figure 7.9: The 6 simple jumps maintain 10 sets of “particles” whose sizes illustrate their weights. The
sets are updated and re-weighted in each jump steps, and they encode the proposal probabilities in a non-
parametric representation.

Thirdly, the computational cost at each jump step should be small. The proposal probability ratios in our
design are factorized and computed by discriminative probability ratios. These discriminative probabilities
are computed in bottom-up processes which are then used to activate the generative models in a top-down
process. As Fig. 7.9 illustrates, each jump maintains a list of “particles” which are weighted hypotheses
with the weights expressing the discriminative probability ratios. Then a particle is proposed at a probability
proportional to its weight within the list (scope). The higher the weight is, the more likely a particle will be
chosen.

168

7.4.3 Experiments

The proposed algorithm searches for the optimal solution W ∗ by sampling p(W |I). It starts from a seg-
mentation with regions obtained at a coarse level by the Canny edge detector. Our method does not rely
much on initial solution due to the use of various MCMC dynamics guided by bottom-up proposals, which
help the algorithm to jump out of local minimums. However, we do use an annealing strategy to allow large
change ofW at high temperatures, and to focus more on local modes with the temperature gradually cooling
down. The optimal solution W ∗ is found when the algorithm converges since p(W ∗|I) is in general highly
peaked for many vision problems, especially at a low temperature. It is always desirable to avoid the use of
annealing.

Experiment A: computing regions and free curves

An example is shown in Fig. 7.10. For each example, the first row displays the input image Iobs, the
computed free curves W c, and the region segmentations W r in the background. The second row shows
the synthesized image according to the generative models for the regions Irsyn ∼ p(I|W r), the curves
Icsyn ∼ p(I|W c), and the overall synthesis Isyn by occluding Icsyn on Irsyn.

We construct synthesis image to verify how an input image is represented in W ∗. In the experiment,
two parameters in the prior models are adjustable: (1) γr in Eqn. 7.47, and (2) γc in Eqn. 7.36. The two
parameters control the extent of the segmentation, i.e. , the number of regions and curves. Therefore they
decide how detailed we like the parsing to be. Usually we set γr = 5.0 and γc = 3.5 and other parameters
are fixed.

input curves W c regions W r

synthesis synthesis Icsyn ∼ by W c synthesis Irsyn ∼ by W r

Figure 7.10: Experiment A: parsing images into regions and free curves.

Experiment B: assuming regions, curves and parallel groups, and trees

In the second experiment, we further compute the parallel groups and trees by turning on the two composite
jumps J7,J8. Figures 7.11 shows an example: The top row shows the parallel groups or trees grouped from

169

Figure 7.11: Experiment B: parsing an image into regions, curves, and parallel curve groups.

the simple curves. The second and third rows are displayed as before. From the results, we can see that the
algorithm successfully segments, detects, and groups regions, curves, and curve groups respectively.

170

8

2.5D Sketch and Depth Maps

Figure 8.1: Representation in Marr’s paradigm. The 2.1D sketch was proposed by Nitzberg and Mum-
ford [184]

.

In previous chapters, we discuss the first stage of early visual processing, i.e., representing the changes
and structures in the image with the primal sketch and 2.1D sketch. In general, the primal sketch is a generic
two-layer 2D representation describing image features such as intensity changes, local geometrical struc-
tures, and illumination effects like light sources, highlights, and transparency. Based on the primal sketch,
the 2.1D sketch, a layered representation, is analyzed to describe the surfaces with occluding relations,
defining the visibility of surfaces and contours in the given image. However, such rough descriptions of the
spatial relations in images are not sufficient for our overall goal to thoroughly understand the vision. To
understand how to obtain descriptions of the world efficiently and reliably from images, we need to make
one step further. In this chapter, we introduce the 2.5D sketch, which aims to analyze the depth information
that describes the relative positions of surfaces in a more precise way.

The idea of the 2.5D sketch first appeared in Marr and Nishihara’s research [168], whose original goal
is to provide a viewer-centered representation of the visible surfaces. As shown in Figure 8.1, the 2.5D
sketch construction is considered to be a significant part of the mid-level vision, the last step before surface
interpretation, and the end, perhaps, of pure perception. We start from Marr’s definition of 2.5D sketch and
the viewer-centered representation, to analyze the vision process from the primal sketch to 2.5D sketch in a
relatively intuitive perspective. Besides, we introduce some methods to reconstruct the 2.5D presentation,

171

i.e., the depth information, for image analyzing, including the shape from stereo, shape from shading and
direct estimation.

8.1 Marr’s Definition

As introduced by Marr in [166], the distances from the observed objects to human’s two eyes are different,
making the two eyes form different images of the world. The disparities in the two images help human brains
estimate the relative distances of the objects from the observer. Marr divides this account into two parts, the
first concerned with measuring disparity and the second concerned with using it. Marr separates both parts
into three levels, i.e., computational theory, representation and algorithm, and hardware implementation.
More specifically, the three steps involved in measuring stereo disparities are: 1) selecting a particular
location on a surface in the scene from one image; 2) identifying the same location in the other image;
and 3) measuring the disparity between the two corresponding image points. Before making use of the
measured disparity, we need to solve another fundamental problem in binocular fusion, i.e., the elimination
or avoidance of false targets. The abundance of matchable features and the disparities between these matches
lead to difficulties in deciding which pair is false and useless. With the validate measured disparities, we can
compute the distance from the viewer to surfaces in the images, and also analyze the surface orientations
from the disparity changes.

According to Marr, constructing the orientation-and-depth map of the visible surfaces around a viewer
is one of the most critical goals of early visual processing. In this map, information is combined from
several different and probably independent processes to interpret disparity, motion, shading, texture, and
contour information. These ideas are called 2.5D sketch by Marr and Nishihara [168]. The full 2.5D
sketch would include rough distances to the surfaces as well as their orientations. Besides, the places where
surface orientations change sharply and where depth is discontinuous could be labeled as contours, which
are informative for further analysis.

Many types of information can be extracted from images by different kinds of early visual processes.
For example, the stereopsis outputs disparity, hence the continuous or small local changes in relative depth.
At the same time, the optical flow generates the relative depth and the local surface orientation. Although
in principle processes like steropsis and motion can directly deliver depth-related information, they are
more likely to deliver local changes of depth by measuring local disparities in practice. However, the main
function of the visual representation we seek should not be limited to making explicit information about
depth, local surface orientations, and discontinuities in these quantities. We want to create and maintain a
global representation of depth that is consistent with the local cues obtained from these sources. Such a
representation is called the 2.5D sketch.

To prepare for a more thorough discussion, we first describe the original definition for a viewer-centered
representation that uses surface primitives of small size as described in [167]. Figure 8.2 illustrates such
representation, which is like having a gradient space at each point in the visual field. It includes a repre-
sentation of contours of surface discontinuity. It has enough internal computational structure to maintain
its descriptions of depth, surface orientation, and surface discontinuity in a consistent state. Depth may be
represented by a scalar quantity r, the distance from the viewer of a point on a surface, and the surface
discontinuities may be represented by oriented line elements. Surface orientation may be represented as a
vector (p, q) in two-dimensional space, equivalent to covering the image with needles. The length of each
needle defines the surface slant (or dip) at the point. Here zero-length corresponds to a surface that is per-
pendicular to the vector from the viewer to that point. The length of the needle increases as the surface
slants away from the viewer. The needle orientation defines the tilt, that is, the direction of the surface’s
slant. In principle, the relationship between depth and surface orientation is straightforward—one is simply

172

Figure 8.2: Reprinted with permission from [167]. Example of a 2.5D Sketch described in [167]. The
surface orientation is represented by arrows, as explained in the text. Occluding contours are shown with
full lines, and surface orientaion discontinuities with dotted lines. Depth is not shown in the figure, though
it is thought that rough depth is available in the representation.

the integral of the other, taking over regions bounded by surface discontinuities. Therefore, it is possible to
devise a representation with intrinsic computational facilities that can maintain the two variables of depth
and surface orientation in a consistent state.

We will discuss the approaches to generate the 2.5D sketch in the following sections, including two
generative methods (in applications of shape from stereo and shape from shading) that generate the 2.5D
sketch from the primal sketch and a recent discriminative approach in deep learning.

8.2 2.5D Sketch from Primal Sketch — Shape from Stereo

In this section, we introduce two works related to shape from stereo. We first briefly introduce the stereopsis
work proposed by Peter Belhumeur in [12]. After that, we introduce the visual knowledge representation
applied in the stereo reconstruction work proposed by [7].

A pair of stereo images have been known to encode the information detailing the scene geometry since
at least the time of Leonardo da Vinci in 1989 [40]. The animal brain has known this for millions of years
and has developed yet barely understood neuronal mechanisms for decoding it. Everywhere animals gaze,
they are able to aware of the relative depths of the observed objects. Even though the stereo vision is not the
only cue to depth, monocular cues are still less exact and often ambiguous in determining the depth and 3D
spatial relations.

Binocular stereopsis algorithms use the data in a pair of images taken from slightly different viewpoints
to construct a depth map of the 3-D surfaces captured within the images [12]. The 3-D surfaces are estimated
by first matching pixels in the images that correspond to the same point on a 3-D surface, and then computing
the point’s depth as a function of its displacement (or disparity) in the two images. The task of matching
points between the two images is known as the correspondence problem.

In the last fifty years, researchers have tried to reconstruct the scene geometry from a pair of stereo
images. Unfortunately, like most computer vision problems, the stereo problem has proven to be more
difficult than initially anticipated. Argued by [12], the solutions for properly handling occluded regions
and salient features in the scene geometry have been largely overlooked. Generally speaking, there are
the following four major problems in matching the two images in binocular stereopsis. 1) Handling the

173

feature noise in the left/right images caused by quantization error, imperfect optics, imaging system, lighting
variation between images, specular reflection, etc. 2) Handling the indistinct image features near pixels
where the matching is ambiguous. 3) Preserving the salient features, such as depth discontinuities at object
boundaries, in the 3D scene geometry to produce an accurate reconstruction. 4) Correctly handling the half-
occlusion regions by first matching half-occluded points to mutually visible points and then estimate the
depth at these points.

For years people have offered solutions to the correspondence problem without adequately addressing
all of these complications. In the early area-based algorithms, the disparity was assumed to be constant
within a fixed-sized window. Other methods integrate a type of smoothness (flatness) constraint into the
matching process, again biasing toward reconstructions with persistent disparity. Although algorithms using
smoothness constraints show effectiveness in handling the first two problems, their performance deteriorated
at salient features in the scene geometry. These algorithms generally over-smooth the depth discontinuities
at object boundaries ("breaks") and in surface orientation ("creases"). Sometimes erratic results would be
produced. Line processes were introduced to solve the image segmentation problem. While this method
helps preserve the boundaries of objects, it overlooks three critical complications. First, the introduction of
line processes to model object boundaries gave rise to highly non-linear optimization problems. Second, no
prescription was given for preserving the other salient features in the scene geometry. Third, it is challenging
to identify whole regions of half-occlusion caused by the discontinuity.

Facing the previous challenges, [12] developed a computational model for stereopsis within a Bayesian
framework by making explicit all of the assumptions about the nature of image coding and the structure
of the world. In designing computer vision models, researchers often skip this step and, consequently,
have no way of testing whether the underlying assumptions are valid. Belhumeur develops a computational
model for binocular stereopsis, attempting to explain the process by which the information detailing the 3-D
geometry of object surfaces is encoded in a pair of stereo images. The model is designed within a Bayesian
framework, making explicit all of our assumptions about the nature of image coding and the structure of
the world. [12] start by deriving our model for image formation, introducing a definition of half-occluded
regions and deriving simple equations relating these regions to the disparity function. In this work, the author
shows that the disparity function alone contains enough information to determine the half-occluded regions.
These relations are utilized to derive a model for image formation in which the half-occluded regions are
explicitly represented and computed. The prior model is presented in a series of three stages, or "worlds,"
where each world considers an additional complication to the prior. The prior model must be constructed
from all of the local quantities in the scene geometry, i.e., depth, surface orientation, object boundaries, and
surface creases.

For computer vision problems, the Bayesian paradigm seeks to extract scene information from an image
or sequence of images by balancing the content of the observed image with prior expectations about the
observed scene’s content. This method is general and can be applied to a wide range of vision problems,
including binocular stereopsis. Let S indicate the scene geometry given the left and the right images by Il
and Ir. Within the Bayesian paradigm, one infers S by considering P (S|Il, Ir), the posteriori probability of
the state of world given the measurement. From the Baye’s theorem, we have

P (S|Il, Ir) =
P (Il, Ir|S)P (S)

P (Il, Ir)
(8.1)

Sometimes P (Il, Ir|S) is referred as the "image formation model" which measures how well S matches
the observed images. P (S) is usually referred to as the "prior model" that measures how probable a partic-
ular S is a priori before the images are observed. We display the maximum a posteriori(MAP) estimate Ŝ.
For notational convenience, we define the "energy" functional as below

174

E(S) = − log(P (Il, Ir|S)P (S)) = ED + EP (8.2)

where ED = − log(P (Il, Ir|S)) is referred as the "data term", and EP = − log(P (S) is referred as the
"prior term". To employ these energy functionals with the underlying assumptions taken into consideration,
one must be careful in choosing random variables to be estimated and in the assumed relations between
these random variables in developing a Bayesian formulation of a vision problem.

8.2.1 The Image Formation Model

In this subsection, we introduce the image formation model proposed by [12]. Besides, the definition of the
epipolar line will be mentioned.

In deriving the model for image formation, we choose the simplest possible geometry: pinhole cameras
with parallel optical axes. Assume the cameras are calibrated and the epipolar geometry is known, we define
disparity relative to an imaginary cyclopean image plane placed halfway between the left and right cameras.
Here we derive explicit relations between disparity and depth, as well as disparity and half-occlusion, show-
ing that the disparity function correctly determines the half-occluded regions in the left and right image
planes. We then use these relations to derive our image formation model.

Assume that we have two pinhole cameras whose optical axes are parallel and separated by a distance
of w. The cameras each have focal length l, with fl the focal point of the left image, and fr the right. Then
we create an imaginary cyclopean camera in the same manner, placing its focal point f half-way along the
baseline, i.e., the line connecting the left and right focal points. Then we restrict the cameras’ placement so
that the baseline is parallel to the image planes and perpendicular to the optical axes, as shown in 8.3. A
point p on the surface of an object in 3D space which is visible to all three cameras is projected through the
focal points onto the image planes. Each image plane has a 2D coordinate system with its origin determined
by the intersection of its optical axis with the image plane. The brightness of each point projected onto
the image planes creates image luminance functions Il, Ir, and I in the left, right, and cyclopean planes,
respectively.

A horizontal plane through the baseline intersects the three image planes in what are called epipolar
lines, which we denote by Xl, Xr, and X , with coordinates xl ∈ Xl, xr ∈ Xr, and x ∈ X , respectively.
The coordinates of the epipolar lines run fight to left, so that when a point in the world moves from left to
right, its coordinates in the image planes increase. When the same point is visible from all three eyes it is
easy to check that x = (xl + xr)/2. Thus, we can relate the coordinates of points projected onto all three
image planes by a positive disparity function d(x) via xl = x + d(x) and xr = x − d(x). Thus we have
d(x) = xl−xr

2 . Suppose z(x) represents the perpendicular distance from a line connecting the focal points
to the point p on the surface of the object, then the disparity d(x) can be related to the distance z(x) by
d(x) = lw

2z(x) .
Some early work assumed that none of the points in either of the left or right images are half-occluded

(visible in one camera, but not in the other). However, the vast majority of the millions of images we view
everyday contain large regions of half-occluded points, and half-occlusion is also a positive cue for human
visual system to determine depth. Thus, computer vision systems must take advantage of the cues provided
by half-occlusion as human visual system [12].

Here we give the definition of the mutually visible point as proposed in [12]. A point p is mutually
visible to both eyes if the triangle formed by p, fi and fr is free of obstructing objects, as shown in 8.4.
Note that according to this definition, if any object is contained within the triangle formed by p, fi and fr,
then the point p is not considered mutually visible, even though the point may be visible to all three eyes.
To determine from the disparity function when a point is mutually visible, it is convenient to introduce a

175

Figure 8.3: Reprinted with permission from [12]. Camera geometries: The figure shows the left and right
image planes, plus an imaginary cyclopean image plane. Both the disparity and distance functions are
defined relative to the cyclopean image plane.

morphologically filtered version d∗(x) of d(x), d∗(x) = max(d(x + a) − |a|). d∗(x) = d(x) if and only
if the point p visible to the cyclopean eye in direction x is mutually visible to the left and right eyes. Thus,
the function d∗(x) tracks the mutually visible points. Then we can define the half-occluded points as the
points which are not mutually visible as in [12]. The half-occluded points O ∈ X are the closure of the set
of points x such that d∗(x) > d(x).

Before further derivations, we must define the previous quantities in the discrete manner. Take the fixed
interval [−a, a] of the cyclopean epipolar line X and sample it at n evenly spaced points represented by
X = x1.....XN such that x1 = −a, xi+1 − xi = δ and xN = a. Let the disparities at the sampled
points be represented by D = d(x1) . . . d(xN) = d1 . . . dN . We define the half-occluded points O ∈ X as
O = xi|dj − di| > |j − i|for somexj . Finally, we discretize the range of possible disparity value with sub-
pixelfineness, so that di ∈ 0, 1

k ,
2
k , . . . , 1, 1 + 1

k , . . . , dmax for some k specifying the disparity resolution.
Since it is not possible to distinguish between jumps in the disparity along a sloping surface and jumps in
disparity at the boundaries of objects unless using sub-pixel resolution, these methods will falsely assume
that the jumps along sloping surfaces produce half-occluded points. Yet, all surfaces visible to both the left
and right eyes have [di+1 − dil < 1 as pointed out in [12].

Keeping within the Bayesian framework, a probabilistic model need to be delveloped for the joint dis-
tribution P (Il, Ir|S). To do this, assume we are given a scene of objects in 3D space with Lambertian
illumination (i.e., an object’s brightness is independent of the viewing angle). Label points on the surfaces
of objects by elements of a set Ψ. To each point p ∈ Ψ, there is a brightness γ(p). Define

∏
l and

∏
r to

be the maps that take points in the image planes to the point on the surface of the closest visible object,
i.e.,

∏
l : Xl → Ψ and

∏
r : Xr → Ψ. The brightness of a visible point once projected into the image

plane is corrupted by noise. Assuming additive Gaussian white noise, image functions can be written as
Il(xl) = γ(

∏
l(xl))+ηl(xl) and Ir(xr) = y(

∏
r(xr))+ηr(xr) where ηl and ηr are independent identically

distributed (i.i.d.) Gaussian noise processes having mean zero and variance ν2. For notational convenience,
we only consider the image functions I1 and Ir along corresponding epipolar lines. The joint density for

176

any set of N samples, which we denote by xl1, . . . , xlN , from the left image function Il, given γ, is

P (Il(xl1), . . . , xlN |γ) = P (Il|γ) =
1

(2πν2)N/2

N∏
i=1

e−
η2
l (xli)

2ν2 (8.3)

where ηl(xli) = Il(xli)− γ(
∏
l(xli)). Likewise, we can get the joint density from the right image function

Ir. Using the fact that ηl and ηr are independent, we can write the combined joint density as

P (Il, Ir|γ) =
1

(2πν2)N

N∏
i=1

e−
η2
l (xli)+η

2
r (xri)

2ν2 . (8.4)

Choose the N samples from the left and right epipolar lines which correspond to the evenly spaced points

Figure 8.4: Reprinted with permission from [12]. Mutually visible points: A mutually visible point has no
object within the triangle specified by p, fl, and fr.

x1.....xN on the cyclopean epipolar line. So we choose xli = xi + di and xri = xi − di. Because the
brightness function γ is unknown, we approximate γ, with its maximum likelihood estimator γ̂(

∏
l(xli)) =

γ̂(
∏
r(xri)) = Il(xli)+Ir(xri)

2 . This approximation yields η2
l (xli) + η2

r (xri) ≈ (Il(xli)−Ir(xri))2

2 , then we

will have the joint density P (Il, Ir|γ̂) = 1
(2πν2)N

∏N
i=1 e

− (Il(xli)−Ir(xri))
2

4ν2 . In this way, we can compute
this quantity from the data if the point xi is mutually visible. However, if the xi is half-occluded, such
formulation is not feasible.

To solve for the half-occluded points, we approximate the squared difference (Il(xli)− Ir(xri))2/2 by
its expected value ν2. Then we have the combined joint density as below

P (Il, Ir|γ̂) =
1

(2πν2)N

N∏
i=1,xi /∈O

e−
(Il(xli)−Ir(xri))

2

4ν2

N∏
i=1,xi∈O

e−
1
2 . (8.5)

or equivalently, the combined joint distribution can be rewrote in therms of the cyclopean epipolar points X
and the corresponding disparities D as

P (Il, Ir|γ̂, D) =
1

(2πν2)N
e−ED , ED =

1

4ν2

∑
X−O

(Il(xi + di)− Ir(xi − di))2 +
∑
O

1

2
(8.6)

177

with ED as the data term in the model.
So far the data model under assumption of Lambertian illumination. Let us generalize the above equa-

tion so that the data term considers, as opposed to simply image intensity, other, possibly more viewpoint
invariant, features (e.g., edges, texture, filtered intensity, etc.). In doing this we rewrite the above equation
by replacing the intensity functions Il and Ir with general feature functions Fl and Fr. Thus, the data term
becomes ED = 1

4ν2

∑
X−O(Fl(xi + di)− Fr(xi − di))2 +

∑
O

1
2 .

Furthermore, [12] derives the prior model for the Bayesian estimator, arguing that to capture the quan-
tities in the scene geometry–namely depth, surface orientation, object boundaries, and surface creases– one
should explicitly represent these quantities as random variables or continuous-time random processes in the
prior model. The derivation is broken up into three stages, or worlds, with each succeeding world consider-
ing additional complications in the scene geometry.

The first world, i.e., World I, is surface smoothness. As shown in [12], we assume a simple world in
which the scenes captured in a stereo pair contain only one object. On the surface of this object, we further
assume that the 2-D distance function of the cyclopean coordinate system is everywhere continuous; so, a
particular epipolar line has both a distance function D and a disparity function d which are also everywhere
continuous. Because the relation between disparity and depth is known, we do not explicitly represent the
depth, but rather the disparity in the derivation of the prior model. In the second world, i.e., World II – Object
Boundaries, we assume a slightly more complicated world than World I: here we consider the possibility of
more than one object in a scene. For this world the assumption is that the disparity function d is a sample
path of the sum of a scaled Brownian motion process and a compound Poisson process with i.i.d., uniform
random variables. In this way, we were able to consider multiple objects in a scene by introducing random
variables which explicitly represented the discontinuities in disparity at the boundaries of objects. The third
world is a more complicated one, which is the world for Surface Slope and Creases. In this world, not only
do we consider more than one object in a scene, but we also consider that surfaces of objects may be steeply
sloping and may have creases. We recommend [12] for further implementation details about the proposed
model.

In the rest of this section, we present a two-level generative model that incorporates generic visual knowl-
edge for dense stereo reconstruction introduced by [7]. In this work, the visual knowledge is represented
by a dictionary of surface primitives including various categories of boundary discontinuities and junctions
in parametric form. Given a stereo pair, we first compute a primal sketch representation which decomposes
the image into a structural part for object boundaries and high intensity contrast represented by a 2D sketch
graph, and a structureless part represented by Markov random field on pixels. Then we label the sketch
graph and compute the 3D sketch (like a wire-frame) by fitting the dictionary of primitives to the sketch
graph. The surfaces between the 3D sketches are filled in by computing the depth of the MRF (Markov
random field) model on the structureless part using conventional stereo methods. These two levels interact
closely with the primitives acting as boundary conditions for MRF, and the MRF propagating information
between the primitives. The two processes maximize a Bayesian posterior probability jointly. [7] proposes
an MCMC algorithm that simultaneously infers the 3D primitive types and parameters and estimates the
depth (2.5D sketch) of the scene. The experiments show that this representation can infer the depth map
with sharp boundaries and junctions for texture-less images, curve objects, and free-form shapes.

The overall dataflow of the algorithm is illustrated in Figure 8.5. Given a stereo pair of images, [7] first
compute a primal sketch representation [91] which decomposes the image into two layers. (i) A structural
layer for object boundaries and high intensity contrast represented by a 2D sketch graph, and (ii) a structure-
less layer represented by Markov random field on pixels. The sketch graph in the structural layer consists of
a number of isolated points, line segments, and junctions which are considered vertices of different degrees
of connection.

178

Il

I
sk

I
nsk

Left image

Sketchable

part

Non-sketchable

part

2D

Sketch

V

3D sketch

R

MRF

D
Depth map

Dictionary of

primitives

Fill-in adjust

S

Figure 8.5: Reprinted with permission from [7]. The flow diagram of the algorithm.

[7] then study the 3D structures for these points, line segments, and junctions and develop a dictionary
for different configurations. The boundary primitives correspond to places where the depth map is not
smooth, namely the boundaries between objects in the scene (first order discontinuities) and the places
where the surface normal experiences large changes in direction (second order discontinuities). The curve
primitives describe thin curves of different intensity from the background, and usually represent wire-like
3D objects such as thin branches of a tree or electric cables, etc. The point primitives represent feature
points in the image that have reliable depth information. The valid combinations of these 3D primitives is
summarized in a dictionary of junctions. Figure 8.8 and 8.9 shows the dictionaries of line segments and
junctions respectively. Each is a 3D surface primitive specified by a number of variables. The number of
variables is reduced for degenerated (accidental) cases.

[7] adopt a probability model in a Bayesian framework, where the likelihood is described in terms
of the matching cost of the primitives to images, while the prior has terms for continuity and consistency
between the primitives, and a Markov Random Field that is used to fill in the depth information in the
structureless areas. This Markov Random Field together with the labeling of the edges can be thought of as
a Mixed Markov Model [69], in which the neighborhood structure of the MRF depends upon the types of
the primitives, and changes dynamically during the computation.

The inference algorithm simultaneously finds the types of the 3D primitives, their parameters and the
full depth map (2.5D sketch). To make-up for the slowdown given by the long range interactions between
the primitives through the MRF, the algorithm makes use of data driven techniques to propose local changes
(updates) in the structureless areas.

The model proposed in [7] is different from other models existent in the literature in the close rela-
tionship between the MRF and the boundary primitives. The non-horizontal boundary primitives serve as
control points for the MRF, while the horizontal primitives and the occluded sides of the primitives have
their disparity determined by the MRF.

In the following subsections, we introduce more details about the work in [7]. We first present the
representation, dictionary of primitives and junctions and probabilistic formulation in section 8.2.2, and then
explain the algorithm details in section 8.2.3. Finally, the results obtained in [7] is shown in section 8.2.4.

8.2.2 Two Layer Representation

Given a stereo pair Il, Ir of images, we would like to find the depth of all pixels in Il. Assuming that
the camera parameters are known, this is equivalent to finding for each pixel, the horizontal disparity that
matches it to a corresponding pixel in Ir. Let D be the disparity map that needs to be inferred and Λ be the
pixel lattice.

We assume the disparity map D is generally continuous and differentiable, with the exception of a

179

(a) (b) (c)

Figure 8.6: Reprinted with permission from [7]. The algorithm proposed in [7] starts from a two layer sketch
representation. (a) input image, (b) region layer, (c) curve layer.

number of curves Λsk where the continuity or differentiability assumption does not hold. These curves are
augmented with disparity values and are considered to form a 3D sketchDs that acts as boundary conditions
for the Markov Random Field modeling the disparity on Λnsk = Λ \ Λsk.
A. The sketch layer - from 2D to 3D. Assume that the places where the disparity is discontinuous or non-
differentiable are among the places of intensity discontinuity. The intensity discontinuities are given in the
form of a sketch S consisting of a region layer SR and a curve layer SC , as illustrated in Figure 8.6. The
curve layer is assumed to occlude the region layer. These sketches can be obtained as in [91, 238]. The
sketch edges are approximated with line segments S = {si, i = 1, .., ne}. The segments that originated
from the region layer si ∈ SR will be named edge segments while the segments originating from the curve
layer si ∈ SC will be named curve segments.

Each edge segment si ∈ SR from the region layer is assigned two 5 pixel wide edge regions li, ri, on
the left respectively on the right of si, as shown in Figure 8.7, left. Each curve segment sj ∈ SC is assigned
a curve region rj along the segment, of width equal to the width of the curve, as shown in Figure 8.7, right.
Denote the pixels covered by the edge and curve regions by ΛR,ΛC respectively.

Figure 8.7: Reprinted with permission from [7]. Division of the image in Figure 8.6 into sketch primitives
and 6x6 pixel square regions. Region layer (left) and curve layer (right).

Because away from the places of discontinuity, the surfaces are in general very smooth and to reduce
the dimensional of the problem, the pixels of Λ\ΛR are grouped into square regions of size 6×6 pixels, by
intersecting Λ \ ΛR with a 6× 6 rectangular grid. Small regions at the boundary between the edge regions
and the rectangular grid are merged to the edge regions. This way, the entire lattice Λ is divided into atomic
regions that either are along the sketch SC , or are on the rectangular grid, as shown in Figure 8.7. This
structure allows the use of the thin plate spline model for the MRF and also enables implementation of good
boundary conditions by the 3D primitives.

Then all line segments si ∈ S are augmented with parameters to become 3D sketch primitives, as shown

180

Figure 8.8: Reprinted with permission from [7]. Each sketch segment is augmented to a primitive from the
following dictionary, ordered by generality.

in Figure 8.8. Depending on the type of segments they originated from, there are boundary primitives and
curve primitives.
B. A dictionary of primitives. Let

V1 = {πi = (si, [li, o
l
i], ri, o

r
i , ti, pi, di, wi[, fi]), i = 1, .., ne} (8.7)

be the set of all primitives, where the parameters in brackets might be missing, depending on the primitive
type. The variables of each primitive are:

1. The edge segment si ∈ SR or curve segment si ∈ SC
2. The left and right regions (wings) li, ri in case of an edge segment, or the curve as a region ri in case

of a curve segment.

3. an occlusion label oli, o
r
i for each of the regions li, ri, representing whether the region is occluded

(value 0) or not (value 1).

4. The label ti = t(πi) ∈ {1, .., 8} indexing the type of the primitive from the primitive dictionary with
the restriction that edge segments si ∈ SR can only be assigned types from {1, .., 6} while curve
segments si ∈ SC can only be assigned types from {1, 7, 8}. These types are illustrated in Figure 8.8.

• Type 1 represents edges or curves that are on the surface of the objects.

• Type 2 represents first order discontinuities, i.e. places where the surface is continuous but the
normal is discontinuous.

• Types 3, 4, 5, 6 represent occluding edges where the occluded surface is on the left (types 3, 4)
or on the right (types 5, 6) of the edge.

• Types 7, 8 represent 3D curves, either connected with one end to the surface behind, or totally
disconnected.

181

Figure 8.9: Reprinted with permission from [7]. These are the main types of junctions between boundary
and curve primitives.

5. A label pi specifying whether this primitive is a control point (value 1) of the thin plate spline or not
(value 0). All horizontal edges have pi = 0 at all times.

6. The disparities di = d(πi) = (d0
i , d

1
i) at the endpoints of the segment or the disparity di = d(πi) at

the center of the segment if the segment is short (less than 6 pixels long).

7. The left and right control arm wi = w(πi) = (wli, w
r
i) representing the slope of the disparity map D

in the direction perpendicular to the line segment.

8. For types 3-6, the disparity fi = f(πi) = (f0
i , f

1
i) of the occluded surface at the ends of the segment,

or the disparity fi = f(πi) at the center of the edge segment if the segment is short (less than 6 pixels
long).

Each of the regions li, ri of the primitive πi = (si, [li, o
l
i], ri, o

r
i , ti, pi, di, wi[, fi]) is assigned a matching

cost where for each pixel v ∈ ri, the disparity dv(πi) is the linear interpolation based on the parameter d
representing the disparity at the ends of the region, in the assumption that w = 0.

c(ri, d) =

0 if ri intersects the curve sketch SC∑

v∈ri |Il(v)− Ir(v − dv(πi))| if ori = 1

α else

(8.8)

Then the matching cost of the primitive πi is

c(πi) = c(ri, [li], ti, di, [fi]) =

c(ri, di) if ti = 7, 8, 1(curve)

c(li, di) + c(ri, di) if ti = 2, 1(region)

c(li, fi) + c(ri, di) if ti = 3, 4

c(li, di) + c(ri, fi) if ti = 5, 6

(8.9)

182

The primitives form a graph by the natural adjacency relation between the underlying edge segments.
C. Modeling junctions between the primitives. To increase the model accuracy, the junction points of
two or more primitives are modeled. Similar to [214], certain types of possible junctions depending on
the degree (number of primitives) of the junction are introduced below and illustrated in Figure 8.9. These
junctions include:

• Junctions of 2 boundary primitives have three main types: Surface junctions, beginning of occlusion
and occlusion junctions.

• Junctions of 3 boundary primitives have three main types: Surface junctions, Y-junctions and T-
junctions.

• Junctions of 4 or more boundary primitives are accidental and are assumed to be all surface junctions.

• No junctions between one or two curve primitives and one boundary primitive.

• Junctions of 1 curve primitive with two boundary primitives have three main types: curve beginning,
Y-junctions and T-junctions.

• Junctions of 2 curve primitives have only one type.

• Junctions of 3 curve primitives have only one type, namely bifurcation.

• Junctions of 4 curve primitives have two types, namely curve crossing or curve overlapping. In both
cases, the opposite primitives can be seen as part of the same 3D curve.

Let J = {φi = (t, k, πi1 , ..., πik), πi1 , ..., πik ∈ V1, i = 1, ..., nJ} be the set of junctions, each containing
the list of primitives that are adjacent to it. The variable t is the junction type and restricts the types of the
primitives πi1 , ..., πik to be compatible to it.

Each junction φi ∈ J imposes a prior model that depends on the junction type, and the types and
directions of the 3D primitives πi1 , ..., πik meeting in this junction. This prior is composed of a 3D geometric
prior on the primitives and a 2D occurrence prior of each particular junction type.

Thus
P (φ) ∝ P (πi1 , ..., πik |t, φ2D)P (φ2D, t) = P (φ3D|t, φ2D)P (t|φ2D) (8.10)

since the 2d geometry φ2D of the junction is fixed.
We will now discuss P (φ3D|t, φ2D) for each junction type. To simplify the notation, we define two

continuity priors:

pc(πi, πj) =
1

Zc
exp(−βc|dφi − d

φ
j |2)

ps(πi, πj) =
1

Zs
exp[−βc|dφi − d

φ
j |2 − βs(|d

φ
i − 2dφi + dφj |2 − |d

φ
i − 2dφj + dφj |2)]

(8.11)

where di = (dφi , d
φ
i) is the disparity of the primitive πi, with dφj being the disparity at the junction φ endpoint.

1) All the surface junctions of 3 or more boundary primitives and the curve bifurcation or crossing have
a prior that prefers the same disparity for all primitives meeting at this junction.

P (φ3D|t, φ2D) =
1

Z1

∏
πj ,πk∈φ

pc(πj , πk) (8.12)

183

Figure 8.10: Reprinted with permission from [7]. Left: The prior of the junction between two boundary or
curve primitives depends on the angle θ between the primitives. Right: The prior of the curve overlapping
junction encourages continuity of each pair of opposite curves.

2) The prior of junctions of two boundary or two curve primitives depends on the angle θ between the
primitives at the junction.

P (φ3D|t, φ2D) =
1

Z2

{
pc(πj , πk) if |θ − π| > π/6

ps(πj , πk) else
(8.13)

as shown in Figure 8.10, left.
3) For the curve overlapping junction involving four curve primitives, the prior is defined in terms of the

continuity of each pair of opposite curves.

P (φ3D|t, φ2D) = ps(πi, πk)ps(πj , πl) (8.14)

as shown in Figure 8.10, right.
4) For the Y-junctions of 3 boundary primitives and for the curve beginning, the prior encourages all

three primitives to be adjacent, and the primitives πi, πj (refer to Figure 8.9) to have a good continuation as
in case 2).

P (φ3D|t, φ2D) =
1

Z4
ps(πi, πj)

∏
πu,πv∈φ,{u,v}6={i,j}

pc(πu, πv) (8.15)

5) For the T-junctions, the prior encourages continuity of the occluding edge.

P (φ3D|t, φ2D) = ps(πi, πj) (8.16)

Since the disparity space of each primitive is discretized, the normalizing constant for each junction can
be computed effectively.

The prior P (t|φ2D) can be learned from hand labeled data, independently for each degree (number of
primitives) k of the junction.

Based on the matching cost, a saliency map

ψπi(d, [f]) = exp(−c(ri, [li], ti, d, [f])/10) (8.17)

towards all possible values of d, f is computed for each primitive πi ∈ V1. This information will be used to
find the disparities di of the sketch primitives.

We also compute a saliency map towards the three main types of boundary primitives, namely surface
(types 1, 2), occluding left (types 3, 4), occluding right (types 5, 6), based on the feature

ξ(πi) =
mind c(li, d)

|li|
− mind[c(li, d) + c(ri, d)]

|li|+ |ri|
(8.18)

184

which measures how well both wings of the primitive fit the same disparity, as compared to the left wing
alone.

From hand labeled data, we obtained histograms H12, H34, H56 of the values of ξ for each of the three
main types of boundary primitives. We fit these histograms with Gaussians to even out the small amount of
training data and eliminate the need for histogram bins. From here we obtain a likelihood Lπ(t) towards the
three main types of boundary primitives.

Lπ(t) =

60e−ξ

2/2 if t = 1, 2

4.4e−(ξ+1.18)2/1.42 + 3.67e−(ξ+8.21)2/6 if t = 3, 4

9.18e−(ξ−0.58)2/0.87 + 3.06e−(ξ−7.36)2/7.5 if t = 5, 6

(8.19)

Using the intensity-driven likelihood for the boundary primitives, we construct a likelihood, driven
simultaneously by the image intensity and the geometry (relative position of primitives), for each junction
φ = {π1, ..., πk}:

Lφ(t) = P (φ)Lπ1(t1)...Lπk(tk) (8.20)

Figure 8.11: Reprinted with permission from [7]. Left image of a stereo sequence, the graph labeling and
the control points (point and boundary primitives) of the thin plate spline.
D. The free-form layer. The primitives π ∈ V1 discussed in the previous section are elongated primitives
corresponding to line segments, so they can be considered of dimension 1. Other sketch primitives that
are involved in the free form layer are the zero dimensional primitives corresponding to feature points with
reliable disparity information, i.e. point primitives. These primitives are a subset of the rectangular atomic
regions, and together with the one dimensional boundary primitives are the control points of the thin plate
spline. The curve primitives are not involved in the MRF computation.

Let R be the set of all rectangular atomic regions. For each region r ∈ R, we compute a saliency map

ρr(d) ∝ exp(−
∑
v∈r
|Il(v)− Ir(v − d))|/10) (8.21)

to all possible disparities d ∈ [dmin, dmax]. Then the square regions

R = {ri = (di, oi, pi, µi, σ
2
i), i = 1, .., nr} (8.22)

have the following parameters:

1. the disparity di = d(ri) of the center of the region

2. a label oi specifying whether this region is occluded (value 0) or not (value 1).

185

3. a label pi = p(ri) ∈ {0, 1} representing whether the region is a point primitive (i.e. control point for
the thin plate spline) or not.

4. the mean µi and variance σ2
i of the saliency map ρri .

Following [12], all regions (edge regions, curve regions, and square regions) will have their occlusion
label deterministically assigned based on the disparities of the boundary and curve primitives. For example,
for an occlusion primitive πi of type 4, the left region li and other regions horizontally to the left of the edge
at horizontal distance less than the disparity difference between the right and left wings of πi will be labeled
as occluded.

The matching cost for each region ri ∈ R is

c(ri) =

{
α if oi = 0∑

v∈ri |Il(v)− Ir(v − di))| if oi = 1
(8.23)

The set of point primitives is denoted by

V0 = {ri ∈ R, si = 1}. (8.24)

In Figure 8.11 are shown the labeled graph, i.e. primitive types (middle), and the point and boundary
primitives that act as control points for the Λnsk part (right). The depth and disparity maps obtained this
way are shown in Figure 8.15. Observe that the horizontal edges are not control points.

The dense disparity map D is obtained from V1 and R by interpolation. By using the boundary primi-
tives to model the places of discontinuity, the obtained disparity map has crisp discontinuities at the object
boundaries and is smooth everywhere else, as shown in Figure 8.15.
E. Bayesian formulation. We formulate our model using the Bayes rule:

P (V1, R|Il, Ir) = P (Il|Ir, V1, R)P (R− V0|V0, V1)P (V0, V1) (8.25)

The likelihood P (Il|Ir, V1, R) is expressed in terms of the likelihood Lπi(ti) and matching cost c(rj) of the
sketch primitives.

P (Il|Ir, V1, R) ∝
ne∏
i=1

Lπi(ti) exp[−
∑
rj∈R

c(rj)] (8.26)

The prior
P (R− V0|V0, V1) ∝ exp[−Ec(R)− βbEb(R, V1)]

is defined in terms of the energy of the soft control points:

Ec(R) =
∑
rj∈V0

(dj − µj)/2σ2
j

and the thin plate bending energy:

Eb(R, V1) =
∑

(x,y)∈G

[d2
xx(x, y) + 2dxy(x, y)2 + d2

yy(x, y)],

which is computed on a 6 × 6 grid G containing the centers of all the square regions and neighboring
grid points on the boundary primitives. For example, if the point (x, y) ∈ G is the center of rj ∈ R and
rN , rNW , rW , rSW , rS , rSE , rE , rNE are the 8 neighbors of rj , then

dxx(x, y) = dW − 2dj + dE

dyy(x, y) = dN − 2dj + dS

dxy(x, y) = (dNE + dSW − dNW − dSE)/4

186

Similar terms in the bending energy Eb(R, V1) can be written for cases where one or many of the
neighbors are boundary primitives. However, there are no terms involving the left and right atomic regions
li, ri ∈ πi belonging to the same edge primitive πi.

The prior P (V0, V1) = P (V0)P (V1) assumes a uniform prior on V0 while P (V1) is defined in terms of
the junction priors P (φi) defined above, P (V1) =

∏
φi∈J P (φi).

8.2.3 The inference algorithm

In our problem formulation, there are two types of variables, discrete and continuous. The discrete variables
are

∆ = V d
1 ∪Rd (8.27)

consisting of V d
1 = {(t(π), ol(π), or(π), p(π)),∀π ∈ V1} and Rd = {(s(r), o(r), p(r)), ∀ r ∈ R}. All

other variables are continuous variables, namely V c
1 = V1 \ V d

1 and Rc = R − Rd, and can be divided into
the boundary conditions

Γ = V c
0 ∪ {d(π), ∀π ∈ V1, p(π) = 1}

and the fill-in variables

Ψ = {([w(π)], [f(π)]),∀π ∈ V1} ∪ {d(π),∀π ∈ V1, p(π) = 0} ∪Rc − V c
0 .

The posterior probability can then be written as

p(V1, R|Il, Ir) = p(∆,Γ,Ψ|Il, Ir) (8.28)

In a MAP formulation, our algorithm needs to perform the following three tasks:

1. Reconstruct the 3D sketch to infer the parameters Γ of the primitives.

2. Label the primitive graph to infer the discrete parameters ∆, i.e. associates the primitives with the
appropriate types. This represents the detection of surface boundaries and of the feature points of the
image.

3. Perform "fill in" of the remaining parts of the image, using the MRF and Γ,∆ as boundary conditions,
to infer Ψ and obtain a dense disparity map D.

The algorithm will proceed as follows. In an initialization phase, the first two steps will be performed to
compute an approximate initial solution. Then steps 2) and 3) will be performed to obtain the final result.
A. Initialization. Initializing the system purely based on the local depth ψπ and likelihood Lπ(t) informa-
tion existent at the primitives π ∈ V1 results in an inconsistent initial solution which is valid only at places
with reliable local depth information, as shown in Figure 8.12,left.

A major improvement can be achieved by using the junction prior P (φ) that has been defined in Section
8.2.2C, which provides a way to propagate depth information quickly along the edges of the sketch, from
the places where it is available. This is why we use an approximation of the posterior probability that only
takes into account the matching cost of the edge regions πi ∈ V1 and the junction prior.

P (V1|Il, Ir) ∝
ne∏
i=1

Lπi(ti)
∏
φi∈J

P (φi) (8.29)

At this stage, the variables that highly depend on the thin plate spline prior will be assigned some default
values. Thus, the wing parameters wi, ∀πi ∈ V1 will be assigned value 0 (i.e. all wings will be horizontal),
while the occlusion labels oi will be assigned value 1 (unoccluded).

The initialization algorithm alternates the following MCMC steps:

187

Figure 8.12: Reprinted with permission from [7]. Left: An initialization purely based on local information
is not satisfactory. Right: By propagating the junction priors along the sketch, a much better initialization
can be quickly obtained.

• a single node move that changes one variable di at a time.

• a move that simultaneously shifts all di at the same junction φ by the same value. This move is capable
of adjusting the disparity of primitives at a junction at times when changing the disparity of only one
primitive will be rejected because of the continuity prior.

• a labeling move as described in the MCMC algorithm below, which proposes a new labeling for a set
of primitives and junctions. The move is accepted using the Metropolis-Hastings method based on
the posterior probability from Eq. (8.29).

The algorithm is run for 10|V1| steps and obtains the initialization result shown in Figure 8.12, right in
about 10 seconds. The initialization algorithm is very fast because the fill-in of the interior pixels is not
performed, eliminating the expensive MRF computation.

The 3D reconstruction of the curve primitives is performed separately in a similar manner. The labeling
move is much simpler, since the curve primitives basically accept two labels, surface/non-surface. The
rectangular regions with low matching cost and small variance (less than 1) will initially be labeled as
control points for the thin plate spline.
B. Updating the fill-in variables Ψ. Observe that in our formulation of the energy, if ∆,Γ are fixed,
the conditional − log(P (Ψ|∆,Γ)) is a quadratic function in all the variables Ψ, so it can be minimized
analytically. This implies that Ψ can be regarded as a function on ∆,Γ, Ψ = Ψ(∆,Γ). This restricts the
problem to maximizing the probability P (∆,Γ,Ψ(∆,Γ)|Il, Ir), of much smaller dimensionality.

Inside each of the regions C bounded by the control point sketch primitives, the variables depend only
on the control points inside and on the boundary of this region. So the computation can be localized to each
of these regions independently, as shown in Figure 8.13. Additional speedups can be obtained following the
approximate thin plate spline methods from [53].

Observe that the update can affect some non-control point edges, such as the horizontal edges from
Figure 8.13.

188

Figure 8.13: Reprinted with permission from [7]. The fill-in can be restricted to the connected components
bounded by control point boundary primitives. In a few steps, the initial 3D reconstruction before graph
labeling is obtained. Shown are the 3D reconstructions after 0,1, and 5 connected components have been
updated. The horizontal edges change the disparity at the same time with the interior, because they are not
control points.

For each such region C, we define relative labels lC of the edges adjacent to C that only take into
account the side of the edge that belongs to C. For example, an occluding edge type 4 and an edge of type 1
will have the same label relative to the region C containing the right wing of the edge. Using these relative
labels, we reduce the computation expense by defining the energy of the region

E(C, lC) = Ec(C) + µbEb(C) +
∑

r∈C∩R
c(r) (8.30)

The full posterior probability can be recovered from the energy of the regions and the junction prior:

P (V1, R|Il, Ir) ∝
ne∏
i=1

Lπi(ti) exp[−
∑
C

E(C, lC)]
∏
φ∈J

P (φ) (8.31)

T-junction

Y-junctionocclusion edge Y-junction

π π ππ

Figure 8.14: Each graph labeling move changes the types of a set of primitives in a consistent manner. First
a primitive π is chosen and its type is sampled from the likelihood Lπ(t), then the adjacent junctions change
their type conditional on the chosen type of π, which in turn determine the types of the other primitives of
the junctions, etc. The labeling move is accepted based on the Metropolis-Hastings method. Illustrated is
the left side of the umbrella image.
C. The MCMC optimization algorithm. After the initialization, the 3D sketch variables Γ = Γ0 will be
fixed. The algorithm will only update the primitive types ∆ and the fill-in variables Ψ.

To maximize P (∆,Γ0,Ψ(∆,Γ0)|Il, Ir) we will use a Markov chain Monte Carlo algorithm that will
sample P (∆,Γ0,Ψ(∆,Γ0)|Il, Ir), and this way obtain the most probable solutions.

At each step, the algorithm proposes, as shown in Figure 8.14, new types for a set of primitives N and
junctions J in one move, as follows:

1. Grow a set N of primitives as follows:
1. Choose a random non-horizontal primitive π.
2. Initialize N = {π} and J = {φ1, φ2} where φ1, φ2 are the two junctions adjacent to π.
3. Sample the primitive type t(π) from the local likelihood Lπ(t).

189

(a) (b) (c) (d)
Figure 8.15: Reprinted with permission from [7]. Results obtained using our method. (a) left image of the
stereo pair, (b) 3D sketch using the primitives, (c) 3D depth map, (d) disparity map.

4. Sample the type of φ ∈ J from Lφ(t), conditional on the primitive type t(π).
This determines the types of all primitives of Nn = {π′ 6∈ N, π′ ∼ φ for some φ ∈ J},
where π ∼ φ means π is adjacent to φ.

5. Set N ← N ∪Nn.
6. Initialize Jn = ∅.
7. For each π ∈ Nn, pick the adjacent junction φ 6∈ J .If π changed its type at step 4, set
Jn ← Jn ∪ {φ}, else set Jn ← Jn ∪ {φ} with probability 0.5.

8. Set J ← J ∪ Jn.
9. Repeat steps 4-8 for each π ∈ Nn and each φ ∈ Jn, π ∼ φ.

2. Update the fill-in variables Ψ(∆,Γ) for the connected components C where it is necessary.
3. Accept the labeling move based on the full posterior probability, computed using eq. (8.31).

8.2.4 Example results

Experiments are presented in Figure 8.15 where four typical images for stereo matching are shown. The
first two have textureless surfaces and the most information is from the surface boundaries. The fifth image
has curves (twigs). For these images, it is not a surprise to see that the graph cut method with simple MRF
models on pixels produce unsatisfactory results. The second and fourth images have free-form surfaces with
or without textures from [151]) and [215]. On the teddy-bear sequence, the percentage of pixels with error

190

at least 1, as compared to the ground truth, is 3.3%. In comparison, the Graph Cuts result observes a 7.3%
error rate. We have also shown the interactions of the two layers in Figure 8.13 and the effects of sketch
labeling in Figure 8.14.

8.3 2.5D Sketch from Primal Sketch — Shape from Shading

In this section, we first briefly introduce the Lambertian model and the classic Horn’s shape-from-shading,
or in short SFS, work. Then we briefly present a two-level generative model for representing the images and
surface depth maps of drapery and clothes.

In computer vision, the techniques to recover shape are called shape-from-X techniques, where X can
be shading, stereo, motion, texture, etc. Shape-from-shading (SFS) deals with the recovery of shape from a
gradual variation of shading in the image. Artists have long exploited lighting and shading to convey vivid
illusions of depth in paintings. It is essential to study how the images are formed in order to solve the SFS
problem. A simple model of image formation is the Lambertian model, in which the gray level at a pixel in
the image depends on the light source direction and the surface normal. In SFS, given a gray level image, the
aim is to recover the light source and the surface shape at each pixel in the image. However, real images do
not always follow the Lambertian model. Even if we assume Lambertian reflectance and known light source
direction, and if the brightness can be described as a function of surface shape and light source direction, it
is still not straightforward. The reason is that if the surface shape is described in terms of the surface normal,
we have a linear equation with three unknowns, and if the surface shape is described in terms of the surface
gradient, we have a nonlinear equation with two unknowns. Therefore, finding a unique solution to SFS is
difficult; it requires additional constraints.

Shading plays an essential role in the human perception of surface shape. Researchers in human vision
have attempted to understand and simulate the mechanisms by which our eyes and brains use the shading
information to recover the 3D shapes. The extraction of SFS by the visual system is also strongly affected by
stereoscopic processing. Barrow and Tenenbaum discovered that it is the line drawing of the shading pattern
that seems to play a central role in interpreting shaded patterns [10]. Mingolla and Todd’s study of the
human visual system based on the perception of solid shape [172] indicated that the traditional assumptions
in SFS – Lambertian reflectance, known light source direction, and local shape recovery – are not valid from
a psychological point of view. From the above discussion, one can observe that the human visual system
uses SFS differently than computer vision does typically.

In the 1990s, Horn et al. [108] discovered that some impossibly shaded images exist, which could not be
shading images of any smooth surface under the assumption of uniform reflectance properties and lighting.
For this kind of image, SFS will not provide a correct solution, so it is necessary to detect impossibly shaded
images.

SFS techniques can be divided into four groups: minimization approaches, propagation approaches,
local approaches, and linear approaches. Minimization approaches obtain the solution by minimizing an
energy function. Propagation approaches propagate the shape information from a set of surface points (e.g.,
singular points) to the whole image. Local approaches derive shape based on the assumption of surface type.
Linear approaches compute the solution based on the linearization of the reflectance map.

One of the earlier minimization approaches, which recovered the surface gradients, was by Ikeuchi and
Horn [116]. Since each surface point has two unknowns for the surface gradient, and each pixel in the
image provides one gray value, we have an underdetermined system. To overcome this, they introduced
two constraints: the brightness constraint and the smoothness constraint. The brightness constraint requires
that the reconstructed shape produce the same brightness as the input image at each surface point, while the
smoothness constraint ensures a smooth surface reconstruction. The shape was computed by minimizing an

191

energy function which consists of the above two constraints. In general, the shape at the occluding boundary
was given for the initialization to ensure a correct convergence. Since the gradient at the occluding boundary
has at least one infinite component, the stereographic projection was used to transform the error function to
a different space. Additionally, Brooks and Horn [22] minimized the same energy function in terms of the
surface normal using these two constraints. For further improvements, Frankot and Chellappa [64] enforced
integrability in Brooks and Horn’s algorithm to recover integrable surfaces (surfaces for which zxy = zyx).
Surface slope estimates from the iterative scheme were expressed in terms of a linear combination of a
finite set of orthogonal Fourier basis functions. The enforcement of integrability was done by projecting
the nonintegrable surface slope estimates onto the nearest (in terms of distance) integrable surface slopes.
This projection was fulfilled by finding the closest set of coefficients which satisfy integrability in the linear
combination. Their results showed improvements in both accuracy and efficiency over Brooks and Horn’s
algorithm [22]. Later, Horn also [111] replaced the smoothness constraint in his approach with an integra-
bility constraint. The major problem with Horn’s method is its slow convergence. Szeliski [229] sped it up
using a hierarchical basis preconditioned conjugate gradient descent algorithm. Based on the geometrical
interpretation of Brooks and Horn’s algorithm, Vega and Yang [241] applied heuristics to the variational
approach in an attempt to improve the stability of Brooks and Horn’s algorithm.

As for traditional propagation approaches, Horn proposed the characteristic strip method [109]. A char-
acteristic strip is a line in the image along which the surface depth and orientation can be computed if
these quantities are known at the starting point of the line. Horn’s method constructs initial surface curves
around the neighborhoods of singular points (singular points are the points with maximum intensity) using
a spherical approximation. The shape information is propagated simultaneously along the characteristic
strips outward, assuming no crossover of adjacent strips. The direction of characteristic strips is identified
as the direction of intensity gradients. To get a dense shape map, new strips have to be interpolated when
neighboring strips are not close to each other.

Examples for local approaches are [192] and [145]. Pentland’s local approach [192] recovered shape
information from the intensity and its first and second derivatives. He used the assumption that the surface
is locally spherical at each point. Under the same spherical assumption, Lee and Rosenfeld [145] computed
the slant and tilt of the surface in the light source coordinate system using the first derivative of the intensity.

The approaches by Pentland and Tsai and Shah are linear approaches which linearize the reflectance map
and solve for shape. Pentland [145] used the linear approximation of the reflectance function in terms of the
surface gradient and applied a Fourier transform to the linear function to get a closed-form solution for the
depth at each point. Tsai and Shah [194] applied the gradient’s discrete approximation first, then employed
the linear approximation of the reflectance function in terms of the depth directly. Their algorithm recovered
the depth at each point using a Jacobi iterative scheme.

Except for the traditional SFS work, we show in the following sections a two-level generative model for
representing the images and surface depth maps of drapery and clothes. The upper level consists of a number
of folds which will generate the high contrast (ridge) areas with a dictionary of shading primitives (for 2D
images) and fold primitives (for 3D depth maps). These primitives are represented in parametric forms
and are learned in a supervised learning phase using 3D surfaces of clothes acquired through photometric
stereo. The lower level consists of the remaining flat areas which fill between the folds with a smoothness
prior (Markov random field). We show that the classical ill-posed problem – shape from shading (SFS)
can be much improved by this two-level model for its reduced dimensionality and incorporation of middle-
level visual knowledge, i.e. the dictionary of primitives. Given an input image, we first infer the folds and
compute a sketch graph using a sketch pursuit algorithm as in the primal sketch [91, 92]. The 3D folds are
estimated by parameter fitting using the fold dictionary and they form the “skeleton" of the drapery/cloth
surfaces. Then the lower level is computed by conventional SFS method using the fold areas as boundary

192

conditions. The two levels interact at the final stage by optimizing a joint Bayesian posterior probability on
the depth map. We show a number of experiments which demonstrate more robust results in comparison with
state-of-the-art work. In a broader scope, our representation can be viewed as a two-level inhomogeneous
MRF model which is applicable to general shape-from-X problems. Our study is an attempt to revisit Marr’s
idea [167] of computing the 21

2D sketch from primal sketch.

Ifd

nfd

fold part

non-fold part

 fold surfaces

cloth surface
fill-inadjust

S

sketch graph

GI
input image

sketch

pursuit

I

folds reconstruction

and fitting

 learning dictionary

 of 3D fold primitives

shape-from-shading

generic prior

fd

nfdS
non-fold surface

S

training

images

photometric

stereo

Figure 8.16: The data-flow of our method for computing the 3D surface S of drapery/cloth from a single
image I using the two-layer generative model. See text for interpretation.

8.3.1 Overview of the Two-Layer Generation Model

The dataflow of our method is illustrated in Figure 8.16 and a running example is shown in Figure 8.17. The
problem is formulated in a Bayesian framework, and we adopt a stepwise greedy algorithm by minimizing
various energy terms sequentially. Given an input image I on a lattice Λ, we first compute a sketch graph G
for the folds by a greedy sketch pursuit algorithm. Figure 8.17.(b) is an exemplary graph G. The graph G
has attributes for the shading and fold primitives. G decomposes the image domain into two disjoint parts:
the fold part Ifd for pixels along the sketch and non-fold part Infd for the remaining flat areas. We estimate
the 3D surface Ŝfd for the fold part by fitting the 3D fold primitives in a fold dictionary ∆fd. Figure 8.17.(c)
shows an example of Sfd. This will yield gradient maps (pfd, qfd) for the fold surface. Then we compute
the gradient maps (pnfd, qnfd) for the non-fold part by the traditional shape-from-shading method on the
lower level pixels, using gradient maps in the fold area as boundary conditions. Then we compute the joint
surface S = (Sfd,Snfd) from the gradient maps (p, q) of both fold part and non-fold part. Therefore the
computation of the upper level fold surfaces Sfd and the lower level flat surface Snfd is coupled. Intuitively,
the folds provide the global “skeleton" and therefore boundary conditions for non-fold areas, and the non-
fold areas propagate information to infer the relative depth of the folds and to achieve a seamless surface
S. The two-level generative model reduces to the traditional smoothness MRF model when the graph G is
null. Since the two-layer generative model is similar to the one described in previous section, we skip the
formulation part and show some quanlitative results.

8.3.2 Results

We test our whole algorithm on a number of images. Figure 8.18 shows the results for three images of
drapery hung on wall and a cloth image (last column) on some people. The lighting direction and surface

193

(a) I (b) G

(c) Sfd (d) S

Figure 8.17: (a). A drapery image under approximately parallel light. (b). The sketch graph for the com-
puted folds. (c). The reconstructed surface for the folds. (d) The drapery surface after filling in the non-fold
part. It is viewed at a slightly different angle and lighting direction.

albedos for all the testing cloth are estimated by the method in [271].
In the experimental results, the first row are input images, the second row are the sketches of folds in the

input images and their domain, the third row are the syntheses for Ifd based on the generative sketch model
for the fold areas, the fourth row are the 3D reconstruction results Sfd for the fold areas, while fifth and sixth
rows are the final reconstruction results of the whole cloth surface S shown in two novel views.

In these results, the folds in row (d) have captured most of the perceptually salient information in the
input images, and they can reconstruct the surface without too much skewing effects. It makes sense to
compute them before the non-fold part. We observe that the SFS for the non-fold parts indeed provides
useful information for the 3D positions of the folds.

194

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8.18: (a). Input cloth image. (b). 2d folds and their image domains. (c). Synthesis for 2D fold
sketches Ifd. (d). 3D reconstruction Sfd for fold areas. (e-f). Final reconstructed surface S in novel views.

195

8.4 2.5D Sketch from Direct Estimation

In previous two sections, we introduce two generative models that estimate 2.5D sketch from primal sketch.
Recently, some discriminative methods that directly estimate the 2.5D sketch from images are developed
with the help of large scale dataset and greatly improved computational ability. We review the recent large-
scale dataset for the 2.5D sketch estimation, and some pioneer discriminative models for estimating the 2.5D
sketch.

8.4.1 Dataset

Indoor Scene Dataset

Capturing the depth values directly for an image is hard without a proper sensing device. However, the
development of Kinect provides Computer Vision researchers a feasible way to collect the data with depth
value. Kinect is a line of motion sensing input devices that produced by Microsoft. The first-generation
Kinect for Xbox 360 was introduced in November 2010 and the depth sensor in Kinect consists of an
infrered laser projector combined with a monochrome CMOS sensor, which captures video data in 3D
under anyu ambient light conditions. With the help of Kinect, several indoor scene understanding datasets
have been introduced. Among them, NYU Depth dataset V2 [219] is the most widely used dataset in recent
years. The dataset consists of 1449 RGBD images, gatherd from a wide range of commercial and residential
buildings in three different US cities, comprising 464 different indoor scenes across 26 scene classes. A
dense per-pixel labeling was obtained for each image using Amazon Mechanical Turk.

Outdoor Scene Dataset

KITTI dataset [77] is a large-scale outdoor dataset for autonomous driving which provides various chal-
lenging benchmarks including stereo, optical flow, visual odometry / SLAM and 3D object detection. The
benchmarks are captured by driving around a mid-size city, in rural areas and on highway. Their recod-
ing platform is equipped with two high resolution stereo camera systems (grayscale and color), a Velodyne
HDL-64E laser scanner that produces more than one million 3D points per second and a localization sys-
tem which combines GPS, GLONASS, an IMU and RTK correction signals. The cameras, laser scanner
and localization syustem are calibrated and synchronized, providing accurate ground truth. KITTI pro-
vides benchmark for depth estimation, which makes it possible for direct depth estimation with data-driven
learning methods.

8.4.2 Model

In this part, we introduce a representative discriminative approach [57] that uses convolutional neural net-
work to esimate 2.5D sketch directly. This work presents a method that addresses the task of depth estimation
by employing two deep network stacks: one that makes a coarse global prediction based on the entire image,
and another that refines this prediction locally. It also applies a scale-invariant error to help measure depth
relations rather than scale. The network is trained using a loss that explicitly accounts for depth relations
between pixel locations, in addition to pointwise error.

The network is made of two component stacks, shown in Figure 8.19. A coarse-scale network first
predicts the depth of the scene at a global level. This is then refined within local regions by a fine-scale
network. Both stacks are applied to the original input, but in addition, the coarse network’s output is passed
to the fine network as additional first-layer image features. In this way, the local network can edit the global
prediction to incorporate finer-scale details.

196

Figure 8.19: Reprinted with permission from [57]. Model architecture.

A. Global coarse-scale network

The task of the coarse-scale network is to predict the overall depth map structure using a global view of
the scene. The upper layers of this network are fully connected, and thus contain the entire image in their
field of view. Similarly, the lower and middle layers are designed to combine information from different
parts of the image through max-pooling operations to a small spatial dimension. In so doing, the network
is able to integrate a global understanding of the full scene to predict the depth. Such an understanding is
needed in the single-image case to make effective use of cues such as vanishing points, object locations, and
room alignment. A local view (as is commonly used for stereo matching) is insufficient to notice important
features such as these. As illustrated in Figure 8.19, the global, coarse-scale network contains five feature
extraction layers of convolution and max-pooling, followed by two fully connected layers. The input, feature
map and output sizes are also given in Figure 8.19. The final output is at 1/4-resolution compared to the
input (which is itself downsampled from the original dataset by a factor of 2), and corresponds to a center
crop containing most of the input (as we describe later, we lose a small border area due to the first layer of
the fine-scale network and image transformations)

B. Local fine-scale network

After taking a global perspective to predict the coarse depth map, we make local refinements using a second,
fine-scale network. The task of this component is to edit the coarse prediction it receives to align with local
details such as object and wall edges. The fine-scale network stack consists of convolutional layers only,
along with one pooling stage for the first layer edge features. While the coarse network sees the entire scene,
the field of view of an output unit in the fine network is 45x45 pixels of input. The convolutional layers are
applied across feature maps at the target output size, allowing a relatively high-resolution output at 1/4 the
input scale. More concretely, the coarse output is fed in as an additional low-level feature map. By design,
the coarse prediction is the same spatial size as the output of the first fine-scale layer (after pooling), and we
concatenate the two together (Fine 2 in Figure 8.19). Subsequent layers maintain this size using zero-padded
convolutions.

197

C. Scale-Invariant Error

The global scale of a scene is a fundamental ambiguity in depth prediction. Indeed, much of the error ac-
crued using current elementwise metrics may be explained simply by how well the mean depth is predicted.
However, using an oracle to substitute the mean log depth of each prediction with the mean from the cor-
responding ground truth reduces the error to 0.33, a 20% relative improvement. Likewise, for our system,
these error rates are 0.28 and 0.22, respectively. Thus, just finding the average scale of the scene accounts
for a large fraction of the total error. Motivated by this, we use a scale-invariant error to measure the rela-
tionships between points in the scene, irrespective of the absolute global scale. For a predicted depth map
y and ground truth y∗, each with n pixels indexed by i, we define the scale-invariant mean squared error (in
log space) as

D(y, y∗) =
1

2n

n∑
i=1

(log yi − log y∗i + α(y, y∗))2 (8.32)

where α(y, y∗) = 1
n

∑
i(log yi − log y∗i) is the value of α that minimizes the error for a given (y, y∗).

For any prediction y, eα is the scale that best aligns it to the ground truth. All scalar multiples of y have the
same error, hence the scale invariance.

Two additional ways to view this metric are provided by the following equivalent forms. Setting di =
log yi − log y∗i to be the difference between the prediction and ground truth at pixel i, we have

D(y, y∗) =
1

n

∑
i

d2
i −

1

n2

∑
i,j

didj =
1

n

∑
i

d2
i −

1

n2

(∑
i

di

)2

(8.33)

D. Training Loss

In addition to performance evaluation, we also tried using the scale-invariant error as a training loss. We set
the per-sample training loss to

L(y, y∗) =
1

n

∑
i

d2
i −

λ

n2

(∑
i

di

)2

(8.34)

where di = log yi− log y∗i and λ ∈ [0, 1]. Note the output of the network is log y; that is, the final linear
layer predicts the log depth. Setting λ = 0 reduces to elementwise l2, while λ = 1 is the scale-invariant
error exactly. We use the average of these, i.e. λ = 0.5, finding that this produces good absolute-scale
predictions while slightly improving qualitative output.

E. Data Augmentation

We augment the training data with random online transformations:

• Scale: Input and target images are scaled by s ∈ [1, 1.5], and the depths are divided by s.

• Rotation: Input and target are rotated by r ∈ [−5, 5] degrees.

• Translation: Input and target are randomly cropped to the sizes indicated in Figure 8.19.

• Color: Input values are multiplied globally by a random RGB value c ∈ [0.8, 1.2]3.

• Flips: Input and target are horizontally flipped with 0.5 probability.

198

Note that image scaling and translation do not preserve the world-space geometry of the scene. This
is easily corrected in the case of scaling by dividing the depth values by the scale s (making the image s
times larger effectively moves the camera s times closer). Although translations are not easily fixed (they
effectively change the camera to be incompatible with the depth values), we found that the extra data they
provided benefited the network even though the scenes they represent were slightly warped. The other
transforms, flips and in-plane rotation, are geometry-preserving.

8.4.3 Results

We show some quanlitative results in Figure 8.20.

Figure 8.20: Reprinted with permission from [57]. Example predictions from our algorithm.
NYUDepth [219] on left, KITTI [76] on right. For each image, we show (a) input, (b) output of coarse
network, (c) refined output of fine network, (d) ground truth. The fine scale network edits the coarse-scale
input to better align with details such as object boundaries and wall edges. Examples are sorted from best
(top) to worst (bottom).

199

9

Learning by Information Projection

In this chapter, a general framework for learning a statistical model as an approximation to the true distribu-
tion that generates images is considered.

9.1 Information projection

Figure 9.1: In the above illustration, each point is a probability distribution. f is the true distribution that
generates the training examples. q is the reference distribution or the null model. The curve Ω consists of
all the distributions that reproduce the feature statistics of f . p∗ is the projection of q onto Ω.

Suppose training images {Im,m = 1, ...,M} ∼ f(I) are observed. The goal is to find a good approxi-
mation to the unknown true distribution f that generates the training examples. Suppose M is large so that
it is feasible to estimate the expectations with respect to f accurately from the training examples.

Consider starting from a reference distribution q(I), e.g., the white noise distribution. Suppose there is
a set of features H(I) = (Hk(I), k = 1, ...,K). The following may be estimated:

Ef [H(I)] ≈ 1

M

M∑
m=1

H(Im). (9.1)

Ef [H(I)] is all that is known about the unknown f as far as the feature H is concerned.
Again, the goal is to find a distribution p to be an approximation to the unknown distribution f . Such a

distribution should better reproduce the feature statistics that are most cared about, i.e.,

Ep[H(I)] = Ef [H(I)]. (9.2)

Call p such an eligible distribution. Let

Ω = {p : Ep[H(I)] = Ef [H(I)]} (9.3)

201

be the family of all the eligible distributions. Clearly, f ∈ Ω. See Fig. 9.1 for an illustration, in which
each point is a probability distribution. f is the true distribution that generates the training examples. q is
the reference distribution or the null model. The curve Ω consists of all the distributions that reproduce the
feature statistics of f .

So starting from q, the updated goal is to find a distribution in Ω so that it has the minimum distance
from q, i.e., an eligible distribution that can be obtained from a minimum modification of q, so that artificial
features beyond H are not introduced. Let p∗ be such a distribution. p∗ may be thought of as the projection
of q onto the family Ω, and it is hence called the information projection. More specifically, the objective is
to find

p∗ = arg min
p∈Ω

KL(p|q). (9.4)

9.1.1 Orthogonality and duality

Figure 9.2: The eligible family Ω and the model family Λ are orthogonal, Ω ⊥ Λ, because for any p ∈ Ω,
pλ ∈ Λ, KL(p|pλ) = KL(p|p∗) +KL(p∗|pλ), in which p∗ = Ω ∩ Λ is the intersection.

In order to solve for p∗ = arg minp∈ΩKL(p|q), the Langevin multiplier may be used as it was for
the FRAME model. In this chapter, an approach is adopted that is less direct but is more geometrically
meaningful. A dual minimization problem may be found by introducing another family of distributions that
is called the model family. Specifically, the following exponential family models are defined:

p(I;λ) =
1

Z(λ)
exp [〈λ,H(I)〉] q(I), (9.5)

in which λ = (λk, k = 1, ...,K), 〈λ,H(I)〉 =
∑K

k=1 λkHk(I), and

Z(λ) =

∫
exp [〈λ,H(I)〉] q(I) = Eq[exp [〈λ,H(I)〉]] (9.6)

is the normalizing constant. For simplicity, p(I;λ) as pλ is written. Let

Λ = {pλ,∀λ} (9.7)

be the model family. Clearly, q ∈ Λ with λ = 0. See Fig. 9.2 for an illustration, in which the model family
Λ is illustrated by the vertical curve.

Let p∗ = p(I;λ∗) = Ω ∩ Λ be the intersection between the eligible family and the model family. It
shall be shown that p∗ = arg minp∈ΩKL(p|q), which is the projection that is sought after. The key is that
Ω ⊥ Λ; that is, Ω is orthogonal to Λ, in the sense of the following Pythagorean theorem [44]:

202

Theorem 1. For any pλ ∈ Λ and any p ∈ Ω:

KL(p|pλ) = KL(p|p?) +KL(p?|pλ). (9.8)

Proof:

KL(p|pλ) = Ep[log p(I)]− Ep[log p(I;λ)]. (9.9)

KL(p|p?) = Ep[log p(I)]− Ep[log p(I;λ?)]. (9.10)

KL(p?|pλ) = Ep? [log p(I;λ?]]− Ep? [log p(I;λ)]. (9.11)

Meanwhile, Ep[log p(I;λ?)] = Ep? [log p(I;λ?]], and Ep[log p(I;λ)] = Ep? [log p(I;λ)], because Ep[H(I)] =
Ep? [H(I)], as both p and p? belong to Ω. Thu, the result follows. 2

The above result leads to the following duality result:

p∗ = arg min
p∈Ω

KL(p|q) = arg min
pλ∈Λ

KL(f |pλ). (9.12)

Thus, it is seen that p∗ = arg minp∈ΩKL(p|q) by finding p∗ = arg minpλ∈ΛKL(f |pλ). SinceKL(f |pλ) =
Ef [log f(I)]− Ef [log p(I;λ)],

p∗ = arg min
pλ∈Λ

KL(f |pλ) = arg max
pλ∈Λ

Ef [log p(I;λ)]. (9.13)

Ef [log p(I;λ)] is actually the log-likelihood in the limit.

9.1.2 Maximum Likelihood Implementation

If {Im,m = 1, ...,M} ∼ f(I) is observed, then

Ef [log p(I;λ)] ≈ 1

M

M∑
m=1

log p(Im;λ), (9.14)

so λ∗ can be approximated by the maximum likelihood estimate λ̂ = arg maxλ L(λ), in which

L(λ) =
1

M

M∑
m=1

log p(Im;λ) =
1

M

M∑
m=1

〈λ,H(Im)〉 − logZ(λ) (9.15)

is the log-likelihood function of the exponential family model (9.5).
It can be shown that

∂

∂λ
logZ(λ) = Eλ[H(I)], (9.16)

in which Eλ denotes the expectation with respect to p(I;λ).

∂2

∂λ2
logZ(λ) = Varλ[H(I)], (9.17)

in which Varλ denotes the variance with respect to p(I;λ). Thus,

∂

∂λ
L(λ) =

1

M

M∑
m=1

H(Im)− Eλ[H(I)], (9.18)

203

and

∂2

∂λ2
L(λ) = Varλ[H(I)]. (9.19)

That is, L(λ) is a concave function with a unique maximum, provided that Var[H(I)] is positive definite,
which is the case if the components of H(I) are linearly independent. At the maximum λ̂,

Eλ̂[H(I)] =
1

M

M∑
m=1

H(Im), (9.20)

in which Eλ denotes the expectation with respect to p(I;λ). Thus, at the maximum likelihood estimate, the
model reproduces the observed feature statistics.

If M → ∞, L(λ) → Ef [log p(I;λ)], and at the maximum, Ef [H(I)] = Eλ? [H(I)], i.e., pλ̂ → p∗ =
Λ ∩ Ω.

Crucially, the information projection viewpoint is deeper than the maximum likelihood estimation of
the exponential family model (9.5). The former provides a justification for the latter, and the latter is to
implement the former.

9.1.3 The Minimax Learning Framework

Figure 9.3: The solid curve and the dotted curve illustrate two eligible families defined by two different sets
of feature statistics. q should be projected onto the solid curve instead of the dotted curve in order to get
closer to the target distribution f .

Suppose there are two different sets of features H(I) and H̃(I); then, there are two different eligible
families Ω and Ω̃. If the same reference distribution q is projected onto Ω and Ω̃ respectively, p∗ and p̃∗ will
be the results, respectively. In Fig. 9.3, the solid curve illustrates Ω, while the dotted curve illustrates Ω̃.
Due to the Pythagonrean theorem,

KL(f |q) = KL(f |p∗) +KL(p∗|q) = KL(f |p̃∗) +KL(p̃∗|q). (9.21)

Thus, if the desire is to makeKL(f |p∗) small,KL(p∗|q) needs to be made large. So if there are many differ-
ent choices ofH , then the one that maximizesKL(p∗|q) should be chosen. Recall that p∗ = arg minp∈ΩKL(p|q);
thus, the goal is to solve the following max-min problem:

max
H

min
p∈Ω(H)

KL(p|q), (9.22)

in which Ω(H) is the eligible family defined by the set of features H . Because of the duality, the above
problem is equivalent to the maximum likelihood problem,

max
H

min
λ
KL(f |pH,λ), (9.23)

204

in which pH,λ is the exponential family model defined by H in equation (9.5). Here H is made explicit in
pH,λ because different sets of features are being considered. Thus, the log-likelihood L in (9.15) can be
maximized over both λ and H .

Intuitively, for a given set of featuresH that defines an eligible family Ω(H), the goal is to choose p that
is closest to q to avoid adding artificial features that are not in H . Meanwhile, for different sets of features,
the set of features so that the change from q to the corresponding p∗ is the largest should be chosen.

The minimax entropy learning [279] is a special case of the above learning scheme, in which the refer-
ence distribution q is the uniform measure.

9.1.4 Model Pursuit Strategies

Figure 9.4: Learning a sequence of distributions pk to approach the target distribution f . Each time, the
current distribution pk−1 is projected onto the eligible family defined by Hk to obtain pk.

H(I) = (Hk(I), k = 1, ...,K) may be obtained by selecting each Hk sequentially to pursue a sequence
of models pk that get closer and closer to the target distribution f . Fig. 9.4 illustrates the idea of sequential
projection. The starting point is p0 = q, the reference distribution or the null model. After selecting the
first feature H1, the eligible family Ω(H1) that consists of all the distributions that reproduce Ef [H1(I)]
is obtained. Then, p0 is projected onto Ω(H1) to obtain p1. Then, the second feature H2 is selected and
projected p1 onto Ω(H2) to obtain p2, and so forth. Because of the Pythagonrean theorem, each iteration
approaches the target f .

Sequential projection leads to the following greedy strategy to choose Hk sequentially. At each step, the
maximum reduction in the distance from the current model to the target distribution is sought. Specifically,
let pk−1 be the current model. Hk = arg maxKL(pk|pk−1) is chosen, which can be implemented by the
maximum likelihood of the following exponential family model:

pk(I) =
1

Zk(λk)
exp [λkHk(I)] pk−1(I), (9.24)

in which pk−1 plays the role of the current reference distribution, and both Hk and λk are obtained by
maximizing the likelihood function of (9.24) as a function of Hk and λk. In the end, a model of the form
(9.5) is obtained.

In the above discussion, it is assumed that there is a large dictionary of features {Hi, i = 1, ..., N}, and
a small number of them from this large dictionary may be selected. A related strategy for feature selection
is via `1 regularization, as in basis pursuit [28] or Lasso [232]. Specifically, the following full model is
assumed, instead of the final selected model:

p(I;λ) =
1

Z(λ)
exp

[
N∑
i=1

λiHi(I)

]
q(I), (9.25)

205

in which λ = (λi, i = 1, ..., N) is a long vector. The vector λ is assumed to be sparse, i.e., only a small
number of its components is different from zero. Let L(λ) be the log-likelihood of the above full model;
model selection can be performed by maximizing the `1-regularized log-likelihood, L(λ) + ρ|λ|, in which
|λ| =

∑N
i=1 |λi| is the `1 norm of λ, and ρ is a tuning constant. The maximization of the penalized log-

likelihood L(λ) + ρ|λ| can be accomplished by an epsilon-boosting algorithm [73, 203], in which at each
step, the component ofL′(λ) is chosen that has the maximum magnitude, and then this component is updated
by a small amount ε.

It is also possible that the dictionary of the features are parametrized by some continuous parameters γ,
so the model is

p(I; θ) =
1

Z(θ)
exp

[
N∑
i=1

λiHi(I; γ)

]
q(I), (9.26)

in which θ = (λ, γ). Both λ and γ may be learned by maximum likelihood.

9.2 A Unifying View

9.2.1 Relation to Discriminative Learning

Suppose negative examples from the reference distribution q(I) are observed, and positive examples from
the model p(I;λ) in (9.5) are observed. Let α be the prior probability that a positive example is observed.
Then the posterior probability that an example I is a positive example is

p(+|I) =
1

1 + exp
[
−∑K

k=1 λkHk(I)− b
] , (9.27)

in which b = log[α/(1− α)]. This is a logistic regression model. If examples from multiple categories are
observed, a multinomial logistic regression will be obtained.

The learning method in the previous section can be considered a generative version of adaboost [65].

9.2.2 Learning FRAME

So far, not much detail has been given about the features. In this section, the idea of information projection
using concrete examples of learning two-dimensional distributions, in which the feature statistics are linear
projections or filter responses, shall be elaborated.

Fig. 9.5 illustrates two examples of information projection. The training examples {Im,m = 1, ...,M}
are two-dimensional, i.e., they are images of two pixels. The scatterplot of the data forms a two-dimensional
cloud of points. The features are of the form Hk(I) = h(〈I, Bk〉), in which Bk is also two-dimensional
vector, just like I. 〈I, Bk〉 is the projection of I on Bk. One may also call it a filter response, in which Bk
plays the role of a filter. h(r) is a one-hot indicator vector. Specifically, the range of 〈I, Bk〉 is divided into
a finite number of L bins, so that h(r) = (hl(r), l = 1, ..., L). hl(r) = 1 if r falls into the l-th bin, and
hl(r) = 0 otherwise. Thus,

∑M
m=1Hk(Im)/M =

∑M
m=1 h(〈Im, Bk〉)/M is the histogram of the projected

points {〈Im, Bk〉,m = 1, ...,M} projected onto Bk. It may be assumed that the squared length |Bk|2 = 1
and that the direction Bk may be discretized in the two-dimensional domain.

Consider starting from the uniform distribution over the two-dimensional domain of I, assumed to be
the unit square. Then, apply the model pursuit strategy by selecting Bk, k = 1, ...,K. Each time, a Bk is

206

Figure 9.5: This is an example of learning two dimensional distributions by information projection. Each
step, the marginal distribution of the data points projected onto a selected vector is matched.

selected, and the marginal histogram of the projected points is matched. After a number of steps, a model

p(I; B, λ) =
1

Z
exp

[
K∑
k=1

λkh(〈I, Bk〉)
]
q(I) (9.28)

is pursued, in which λ = (λk, k = 1, ...,K) and B = (Bk, k = 1, ...,K) is the learned dictionary of
projections or filters.

Fig. 9.5 illustrates the learning process. In each example, the first row displays the target distribution
f , as well as the selected direction or filter Bk for each k. The second row displays the learned model p as
more directions are added. After adding only a small number of filters, the learned model p is very similar
to f . The learning method is related to projection pursuit [71].

In Fig. 9.5, the starting point is the uniform distribution. One can also start from Gaussian white noise
model with a small variance.

In addition to the pursuit strategy, the dictionary B may also be learned directly by maximum likelihood,
by taking derivatives with respect to both λ and B. In order to take the derivative with respect toBk, h needs
to be made continuous and differentiable. A possible choice is the rectified linear unit h(r) = max(0, r−b),
in which b is the threshold, which can also be estimated by maximum likelihood.

Although the two toy examples are simple, they are very illustrative and they have deep implications.
The model (9.28) can be extended to model large images by making the filters Bk convolutional, i.e., Bk
is a localized image patch (e.g., 7 × 7) and Bk is applied around each pixel. If this model is learned from
natural images, Gabor filters and Difference of Gaussian filters will be learened. Model (9.28) is the simplest
FRAME model.

207

Figure 9.6: This is an example of learning a sequence of models for shapes by adding shape statistics.

9.2.3 Learning Shape Patterns

In addition to learning image appearance patterns, shape patterns may also be learned by information pro-
jection. Fig. 9.6 illustrates an example of learning generic object shapes by adding shape statistics. Fig. 9.7
illustrates an example of learning specific face shapes by adding relevant statistics.

208

Figure 9.7: This is an example of learning a sequence of models for face shapes by adding shape statistics.

209

10

Information Scaling and Regimes of Models

One fundamental property of natural image data that distinguishes vision from other sensory tasks such as
speech recognition is that scale plays a profound role in image formation and interpretation. Specifically,
visual objects can appear at a wide range of scales in the images due to the change of viewing distance as
well as camera resolution. The same objects appearing at different scales produce different image data with
different statistical properties. Fig. (10.1) shows two examples of information scaling, where the change
of scale causes the change of image properties, which may trigger the change of the modeling scheme for
image representation.

Figure 10.1: Images of the same objects can appear very different at different viewing distance or camera
resolution, a phenomenon we call information scaling.

In this section, we study the change of statistical properties, in particular, some information theoretical
properties, of the image data over scale. We show that the entropy rate, defined as entropy per pixel, of the
image data changes over scale. Moreover, the inferential uncertainty of the outside scene that generates the
image data also changes with scale. We call these changes information scaling.

10.1 Image Scaling

To give the reader some concrete ideas, we first study information scaling empirically by experimenting
with the so-called dead leaves model.

Model and assumptions

The dead leaves model [169] was used by Lee, et al. [144] in their investigation of image statistics of natural
scenes. The model was also previously used to model natural images. For our purpose, we may consider

211

Figure 10.2: Pictures of the simulated ivy wall taken at 8 viewing distances. The viewing distance of the
i+ 1-st image is twice that of the i-th image.

that the model describes an ivy wall covered by a large number of leaves of similar sizes. See Fig. (10.2)
for some examples. We assume that the leaves are of squared shape and are uniformly colored. Each leaf is
represented by:

1. Its length or width r, which follows a distribution f(r) ∝ 1/r3 over a finite range [rmin, rmax].

2. Its color or shade a, which follows a uniform distribution over [amin, amax].

3. Its position (x, y, z), where the wall serves as the (x, y) plane, and z ∈ [0, zmax] is the distance
between the leaf and the wall. We assume that zmax is very small, so that z matters only for deciding
the occlusions among the leaves.

For the collection of leaves {(rk, ak, xk, yk, zk)}, we assume that rk are independent of each other,
and so are ak. (xk, yk, zk) follow a Poisson process in R2 × [0, zmax]. We assume that the intensity of the
Poisson process λ is large enough so that the leaves completely cover the wall. As noted by Lee et al. (2001),
{(rk, ak, xk, yk, zk)} is a Poisson process in the joint domain [rmin, rmax]× [amin, amax]×R2 × [0, zmax]
with respect to the measure f(r)drdaλdxdydz.

Lee et al. (2001) showed that this Poisson process is scale invariant under the assumption that [rmin, rmax]→
[0,∞]. Specifically, under the scaling transformation x′ = x/s and y′ = y/s, where s is a scaling parame-
ter, we have r′ = r/s, and the Poisson process will be distributed in [rmin/s, rmax/s]× [amin, amax]×R2×
[0, zmax] with respect to the measure f(sr′)sdr′daλsdx′sdy′dz, which is equal to f(r′)dr′daλdx′dy′dz′

because f(r) ∝ 1/r3. As [rmin, rmax] → [0,∞], [rmin/s, rmax/s] → [0,∞] too, so the Poisson process is
invariant under the scaling transformation. The assumption of Lee et al. (2000) appears to hold for most of
the studies of natural image statistics.

However, in our experiment, [rmin, rmax] is assumed to be a relatively narrow range. Under the scaling
transformation, this range will change to [rmin/s, rmax/s], which is far from being invariant. From this
perspective, we may consider that Lee et al. (2001) and the papers cited above are concerned with the
marginal statistics by integrating over the whole range of scale. Our work, however, is concerned with the
conditional statistics given a narrow range of scale, especially how such conditional statistics change under
the scaling transformation. While it is important to look at the marginal statistics over the whole range of
scale, it is perhaps even more important to study the conditional statistics at different scales in order to model

212

different image patterns. Moreover, the conditional statistics at different scales may have to be accounted
for by different regimes of statistical models.

Image formation and scaling

Let Ok ⊂ R2 be the squared area covered by leaf k in the (x, y) domain of the ivy wall. Then the scene
of the ivy wall can be represented by a function W (x, y) = ak(x,y), where k(x, y) = arg maxk:(x,y)∈Ok zk,
i.e., the most forefront leaf that covers (x, y). W (x, y) is a piecewise constant function defined on R2.

Now let’s see what happens if we take a picture of W (x, y) from a distance d. Suppose the scope of the
domain covered by the camera is Ω ⊂ R2, where Ω is a finite rectangular region. As noted by Mumford
and Gidas (2001), a camera or a human eye only has a finite array of sensors or photoreceptors. Each sensor
receives lights from a small neighborhood of Ω. As a simple model of the image formation process, we may
divide the continuous domain Ω into a rectangular array of squared windows of length or width σd, where
σ is decided by the resolution of the camera. Let {Ωij} be these squared windows, with (i, j) ∈ D, where
D is a rectangular lattice.

The image I is defined on D. Let s = dσ be the scale parameter of the image formation process, then

Is(i, j) =
1

s2

∫
Ωij

W (x, y)dxdy, (i, j) ∈ D, (10.1)

which is the average of W (x, y) within window Ωij . Equation (10.1) can also be written as

ws(x, y) =
1

s2

∫
W (x′, y′)g((x− x′)/s, (y − y′)/s)dx′dy′ = W ∗ gs; (10.2)

Is(i, j) = ws(u+ is, v + js), (10.3)

where g is a uniform density function within the window [−1/2, 1/2] × [−1/2, 1/2], and gs(x, y) =
g(x/s, y/s)/s2. (u, v) ∈ [0, s)2 denotes the small shifting of the rectangular lattice. There are two opera-
tions involved. Equation (10.2) is smoothing: ws is a smoothed version of W . Equation (10.3) is subsam-
pling: Is is a discrete sampling of ws. To be more general, g in Equation (10.2) can be any density function,
for instance, Gaussian density function.

The scale parameter s can be changed by either changing the viewing distance d or the camera resolution
σ. If we increase s by increasing the viewing distance or zooming out the camera, then both the size of the
scope Ω and the size of the windows Ωij will increase proportionally. So the resulting image Is will change.
For example, if we double s to 2s, then I2s will cover a scope 4 times as large as the scope of Is. Because
each squared window of size 2s contains 4 squared windows of size s, if we look within the portion of
I2s that corresponds to Is, then the intensity of a pixel in I2s is the block average of the intensities of the
corresponding 2× 2 pixels in Is.

If g is a Gaussian kernel, then the set of {ws(x, y), s > 0} forms a scale space. The scale space theory
can account for the change of image intensities due to scaling. But it does not explain the change of statistical
properties of the image data under the scaling transformation.

Empirical observations on information scaling

Figure (10.2) shows a sequence of 8 images of W taken at 8 viewing distances. The images are generated
according to Equation (10.1). The viewing distance of the i+ 1-st image is twice that of the i-th image. So
the viewing distance of the last image is 128 times that of the first image. Within this wide range of viewing

213

Figure 10.3: The 7× 7 local patches taken from the images at different scales.

distance, the images display markedly different statistical properties even though they are generated by the
same W . The reason is that the square leaves appear at different scales in different images.

(1) For an image taken at near distance, such as image (1), the window size of a pixel is much less
than the average size of the leaves, i.e., s � r. The image can be represented deterministically by a
relatively small number of occluding squares, or by local geometric structures such as edges, corners, etc.
The constituent elements of the image are squares or local geometrical structures, instead of pixels.

(2) For an image at intermediate distance, the window size of a pixel becomes comparable to the average
size of leaves, i.e., s ≈ r. The image becomes more complex. For images (4) and (5), they cannot be
represented by a small number of geometrical structures anymore. The basic elements have to be pixels
themselves. If a simple interpretation of the image is sought after, this interpretation has to be some sort of
simple summary that cannot code the image intensities deterministically. The summary can be in the form
of some spatial statistics of image intensities.

(3) For an image at far distance, the window size of a pixel can be much larger than the average size of
the squares, i.e., s� r. Each pixel covers a large number of leaves, and its intensity value is the average of
many leaves. The image is approaching the white noise.

Computer vision algorithms always start from the analysis of local image patches, often at multiple
resolutions. We take some local 7 × 7 image patches from the images at different scales shown in Figure
(10.2). These local image patches exhibit very different characteristics. Patches from near distance images
are highly structured, corresponding to simple regular structures such as edges and corners, etc. As the
distance increases, the patches become more irregular and random. So the local analysis in a computer vision
system should be prepared to deal with such local image patches with different regularities and randomness.

Change of compression rate

We perform some empirical studies on the change of statistical properties of the image data over scale.
What we care most is the complexity or randomness of the image, and we measure the complexity rate
or randomness empirically by JPEG 2000 compression rate. Generally speaking, for a simple and regular
image, there are a lot of redundancies in the image intensities, so only a small number of bits are needed
to store the image without any loss of information up to the discretization precision. For a complex and
random image, there is no much regularity or redundancy in the data, so a large number of bits are required
to store the image. The reason we use JPEG 2000 compression rate to measure the complexity rate is two
folded. First, JPEG 2000 is the state of the art image compression standard, and currently gives the best
approximation to image complexity. Second, given the popularity of JPEG 2000, our results should also be
interesting to image compression community.

The image is compressed by JPEG 2000, and the size of the compressed image file is recorded in terms

214

Figure 10.4: The change of statistical properties over scale. (a) JPEG compression rate. (b) Entropy of
marginal histogram of∇xI.

of the number of bits. This number is then divided by the number of pixels to give the compression rate
in terms of bits per pixel. Figure (10.4.a) plots this measure in the order of viewing distance for images
in Figure (10.2). At near distance, the randomness is small, meaning that the image is quite regular. Then
the randomness starts to increase over distance, because more and more leaves are covered by the scope
of the camera. At far distance, however, the randomness begins to decrease, because the local averaging
operation reduces the marginal variance, and eventually smoothes the image into a constant image because
of the law of large number. In this plot, there are three curves. They correspond to three different rmin in our
simulation study, while rmax is always fixed at the same value. For smaller rmin, the corresponding curve
shifts to the left, because the average size of the leaves is smaller.

We also use a simple measure of smoothness as an indicator of randomness or complexity rate. We
compute pairwise differences between intensities of adjacent pixels ∇xI(i, j) = I(i, j) − I(i − 1, j) and
∇yI(i, j) = I(i, j)−I(i, j−1). ∇I(i, j) = (∇xI(i, j),∇yI(i, j)) is the gradient of I at (i, j). The gradient
is a very useful local feature that can be used for edge detection [?]. It is also extensively used in image
processing. We make a marginal histogram of {∇xI(i, j), (i, j) ∈ D} and compute the entropy of the
histogram. Figure (10.4.b) plots this entropy over the order of distance for images in Figure (10.2). The plot
behaves similarly as the plot of the JPEG 2000 compression rate.

Variance normalization

The local averaging operation in Equation (10.1) reduces the marginal variance of the image intensities. A
more appropriate measure of randomness should be the compression rate of variance-normalized image, so
that this measure is invariant of linear transformations of image intensities. Specifically, for an image I,
let σ2 be the marginal variance of I. Let I′(i, j) = I(i, j)/σ. Then I′ is the variance-normalized version
of I, and the marginal variance of I′ is 1. We compute the JPEG compression rates of variance-normalized
versions of the images in Figure (10.2). Figure (10.5.a) displays the variance-normalized JPEG compression
rate over the order of distance for the three runs of the simulation study. The compression rate increases
monotonically towards an upper bound represented by the horizontal line. This suggests that the scaling
process increases the randomness and transforms a regular image to a random image. The upper bound is
the JPEG compression rate of the Gaussian white noise process with variance 1.

The convergence of the compression rate of the variance-normalized image to that of the Gaussian white
noise image is due to the effect of the central limit theorem. As another illustration, we compute the kurtosis
of the marginal distribution of {∇xI(x), x ∈ D}. The kurtosis is decreasing monotonically towards 0,

215

Figure 10.5: (a) The change of JPEG compression rate of the variance-normalized versions of the images in
Figure (10.2). (b) The change of kurtosis.

meaning that the image feature becomes closer to Gaussian distribution.

Basic information theoretical concepts

Let I(x, y) be an image with (x, y) ∈ D, where D is the discrete lattice of pixels (in what follows, we use
(x, y) instead of (i, j) to denote discrete pixels). Let p(I) be the distribution of I. We are interested in the
following statistical properties [38].

1) Entropy and entropy rate: The entropy of p is defined as

H(p) = Ep[− log p(I)] = −
∫
p(I) log p(I)dI,

and the entropy rate of p is defined as H̄(p) = H(p)/|D|, where |D| is the number of pixels in lattice D.
2) Relative entropy and relative entropy rate: For two distributions p and q, the relative entropy or the

Kullback-Leibler divergence between p and q is defined as

KL(p||q) = Ep
[
log

p(I)

q(I)

]
= −H(p)− Ep[log q(I)] ≥ 0.

The relative entropy rate is k̂(p||q) = KL(p||q)/|D|.
3) Relative entropy with respect to Gaussian white noise: For an image distribution p, let

1

|D|
∑

(x,y)∈D

E [I(x, y)2] = σ2

be the marginal variance. Let q be the Gaussian white noise distribution with mean 0 and variance σ2, i.e.,
I(x, y) ∼ N(0, σ2) independently. Then

KL(p||q) = −H(p)− Ep[log q(I)] = H(q)−H(p) ≥ 0. (10.4)

The second equation in (10.4) follows from Ep[log q(I)] = Eq[log q(I)] because log q(I) is linear in
∑

x,y I(x, y)2,
which has the same expectations under both p and q. Because H(q) ≥ H(p) according to (10.4), the Gaus-
sian white noise distribution has the maximum entropy among all the image distributions with the same
marginal variance.

216

4) Entropy rate of variance-normalized image: Continue from (10.4) and calculate the entropy rate of
Gaussian white noise explicitly, we obtain the relative entropy rate

k̂(p||q) = log
√

2πe− [H̄(p(I))− log σ] = log
√

2πe− H̄(p(I′)),

where I′ = I/σ is the variance-normalized version of image I, and p(I′) denotes the distribution of I′.
So the entropy rate of the variance-normalized image H̄(p(I′)) determines the relative entropy rate k̂(p||q)
of p(I) with respect to the Gaussian white noise q(I). In other words, H̄(p(I′)) measures the departure of p
from the Gaussian white noise hypothesis.

Change of entropy rate

For simplicity, let’s study what happens if we double the viewing distance or zoom out the image by a factor
of 2. Suppose the current image is I(x, y), (x, y) ∈ D. If we double the viewing distance, the window
covered by a pixel will double its size. So the original I will be reduced to a smaller image I− defined on a
reduced lattice D−, and each pixel of I− will be the block average of four pixels of I. More specifically, the
process can be accounted for by two steps, similar to Equations (10.2) and (10.3).

(1) Local smoothing: Let the smoothed image be J, then J(x, y) =
∑

u,v I(x + u, y + v)/4, where
(u, v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. We can write J = I ∗ g where g is the uniform distribution over
{(0, 0), (0,−1), (−1, 0), (−1,−1)}. In general, g can be any kernel with appropriate bandwidth, such as a
Gaussian distribution function.

(2) Subsampling: I
(u,v)
− (x, y) = J(2x+ u, 2y+ v), where, again, (u, v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

Any of the four I
(u,v)
− can be regarded as a subsampled version of J.

Theorem 2. Smoothing effect: Let D be an M ×N lattice, and I is defined on D. Let J = I ∗ g, where g
is a local averaging kernel or a probability distribution. As min(M,N)→∞,

H̄(p(J))− H̄(p(I))→ 1

4π2

∫ 2π

0

∫ 2π

0
log |ĝ(ω)|dω ≤ 0, (10.5)

where ω = (ωx, ωy) is the spatial frequency, and ĝ(ω) =
∑

x,y g(x, y) exp{−i(ωxx+ ωyy)} is the Fourier
transform of the kernel g, where the sum is over the support of g.

Proof: Let I be the image defined on the integer lattice [0,M − 1] × [0, N − 1]. The discrete Fourier
transform of I is

Î(ω) =

M−1∑
x=0

N−1∑
y=0

I(x, y) exp{−i(ωxx+ ωyy)},

where ωx ∈ {2πm/M,m = 0, ...,M − 1} and ωy ∈ {2πn/N, n = 0, ..., N − 1}. The Fourier
transforms of J and g can be similarly defined. Because Î and Ĵ are obtained from I and J respectively by
the same linear transformation,H(p(Ĵ))−H(p(Î)) = H(p(J))−H(p(I)).

For convolution with periodic boundary condition, Ĵ(ω) = Î(ω)ĝ(ω). So

H̄(p(J))− H̄(p(I)) =
1

|D|
[
H(p(Ĵ))−H(p(Î))

]
217

=
1

MN

∑
ω

log |ĝ(ω)| = 1

4π2

∑
ω

log |ĝ(ω)|∆ω

→ 1

4π2

∫ 2π

0

∫ 2π

0
log |ĝ(ω)|dω,

as min(M,N)→∞, where ∆ω = (2π/M)× (2π/N).
A smoothing kernel g is a probability distribution function, ĝ is the characteristic function of g, and

ĝ(ω) =
∑
x,y

g(x, y) exp{−i(ωxx+ ωyy)}

= Eg [exp{−i(ωxX + ωyY)}] ,

where (X,Y) ∼ g(x, y). Then,

|ĝ(ω)|2 = |Eg [exp{−i(ωxX + ωyY)}]|2

≤ Eg
[
| exp{−i(ωxX + ωyY)}|2

]
= 1.

Thus,
∫

log |ĝ(ω)|dω ≤ 0. QED
The above theorem tells us that there is always loss of information under the smoothing operation. This

is consistent with the intuition in scale space theory, where the increase in scale results in the loss of fine
details in the image. The change of entropy rate under linear filtering was first derived in the classical paper
of Shannon (1948) [217].

Next, let’s study the effect of subsampling. There are four subsampled versions I
(u,v)
− (x, y) = J(2x +

u, 2y + v), where (u, v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. Each I
(u,v)
− is defined on a subsampled lattice D−,

with |D−| = |D|/4.

Theorem 3. Subsampling effect: The average entropy rate of I
(u,v)
− is no less than the entropy rate of J,

1

4

∑
u,v

H̄(p(I
(u,v)
−))− H̄(p(J)) = M̄(I

(u,v)
− , ∀(u, v)) ≥ 0, (10.6)

whereM(I
(u,v)
− ,∀(u, v)) = KL(p(J)||∏u,v p(I

(u,v)
−)) is defined as the mutual information among the four

subsampled versions, and M̄ =M/|D|.

Proof:

∑
u,v

H(p(I
(u,v)
−))−H(p(J)) = E

[
log

p(J)∏
u,v p(I

(u,v)
−)

]
= KL(p(J)||

∏
u,v

p(I
(u,v)
−))

= M(I
(u,v)
− , ∀(u, v)) ≥ 0,

where the expectation is with respect to the distribution of J, which is also the joint distribution of I
(u,v)
− .

QED
The scaling of the entropy rate is a combination of Equations (10.5) and (10.6):

218

{
1

4

∑
u,v

H̄(p(I
(u,v)
−))− H̄(p(I))

}
−
{
M̄(I

(u,v)
−) +

1

4π2

∫
log |ĝ(ω)|dω

}
→ 0. (10.7)

For regular image patterns, the mutual information per pixel can be much greater than−
∫

log |ĝ(ω)|dω/4π2,
so the entropy rate increases with distance, or in other words, the image becomes more random. For very
random patterns, the reverse is true. When the mutual information rate equals to −

∫
log |ĝ(ω)|dω/4π2, we

have scale invariance. More careful analysis is needed to determine when this is true.
Next we study the change of entropy rate of variance-normalized image H̄(p(I′)). For simplicity, let’s

assume that p(I) comes from a stationary process, and I− can be any sub-sampled version of J = I ∗ g,
which is also stationary. Let σ2 = Var[I(x, y)] and σ2

− = Var[I−(x, y)] be the marginal variances of I
and I− respectively. Let I′ = I/σ and I′− = I−/σ− be the variance-normalized versions of I and I−
respectively. It is easy to show that

ρ2 =
σ2
−
σ2

=
1

4

∑
u,v

corr(I(x, y), I(x+ u, y + v)) ≤ 1, (u, v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)},

so the smoothing operation reduces the marginal variance. Therefore, we can modify (10.7) into

H̄(p(I
′
−))− H̄(p(I′)) ≈ M̄(I

(u,v)
−)− log ρ+

1

4π2

∫
log |ĝ(ω)|dω, (10.8)

where the difference between left-hand side and right-hand size converges to 0 as |D| → ∞. In (10.8),
the term − log ρ is positive, and it compensates for the loss of entropy rate caused by smoothing, i.e.,∫

log |ĝ(ω)|dω/4π2, which is negative. As a matter of fact, the first two terms, i.e., the mutual information
term and the − log ρ term on the right hand side of (10.8) balance each other, in the sense that if one is
small, then the other tends to be large. However, we have not been able to identify conditions under which
the right-hand side of (10.8) is always positive, which would have established the monotone increase of
the entropy rate of variance-normalized image or monotone decrease of the departure from Gaussian white
noise.

10.2 Perceptual Entropy

Figure 10.6: Transition from deterministic representation to statistical description.

The above analysis on entropy rate is only about the observed image I alone. The goal of computer vision
is to interpret the observed image in order to recognize the objects in the outside world. In this subsection,

219

we shall go beyond the statistical properties of the observed image itself, and study the interaction between
the observed image and the outside scene that produces the image.

Again, we would like to use the dead leaves model to convey the basic idea. Suppose our attention is
restricted to a finite scope Ω ⊂ R2, and letW = ((xi, yi, ri, ai), i = 1, ..., N) be the leaves in Ω that are not
completely occluded by other leaves. Then we have W ∼ p(W) and I = γ(W), where p(W) comes from
the Poisson process that generates the dead leaves, and γ represents the transformation defined by Equation
(10.1) for a scale parameter s.

For convenience, assume that both W and I are properly discretized. For any joint distribution p(W, I),
the conditional entropyH(p(W | I)) is defined as

H(p(W | I)) = −
∑
W,I

p(W, I) log p(W | I). (10.9)

H(p(W | I)) measures the inferential uncertainty or imperceptibility of W from the image I.

Proposition 1. If W ∼ p(W) and I = γ(W), thenH(p(W |I)) = H(p(W))−H(p(I)). That is, impercep-
tibility = scene entropy - image entropy.

This proposition is easy to prove. The marginal distribution of I is p(I) =
∑

W :γ(W)=I p(W). The
posterior distribution of W given I is p(W |I) = p(W, I)/p(I) = p(W)/p(I). Here p(W, I) = p(W)
because I is determined byW . Following the definition in (10.9),H(p(W | I)) = −∑W p(W)(log p(W)−
log p(I)) = H(p(W))−H(p(I)). Here EW [log p(I)] = EI[log p(I)] since I is determined by W .

If we increase the viewing distance or equivalently zooming out the camera while fixing the scope
Ω ⊂ R2, i.e., fixing W , then we obtain a zoomed-out version I− = R(I), where R represents the zooming-
out operation of smoothing and subsampling, and is a many to one transformation. During the process
of zooming out, the total entropy of the image will decrease, i.e., H(p(I−)) ≤ H(p(I)), even though
the entropy per pixel can increase as we have shown in the previous subsection. Therefore, we have the
following result.

Proposition 2. If W ∼ p(W), I = γ(W), and I− = R(I), where R is a many to one mapping, then
H(p(W |I−)) ≥ H(p(W |I)), i.e., the imperceptibility increases as the image is reduced.

What does this result tell us in terms of interpreting image I or I−? Although the model W ∼ p(W)
and I = γ(W) is the right physical model for all the scale s, this model is meaningful in interpreting I
only within a limited range, say s ≤ sbound, so that the imperceptibility H(p(W | I)) is below a small
threshold. In this regime, the representation I = γ(W) is good for both recognition and coding. For
recognition, H(p(W | I)) is small, so W can be accurately determined from I. For coding, we can first
code W according to p(W), with a coding cost H(p(W)). Then we code I using I = γ(W) without any
coding cost. The total coding cost would be just H(p(W)). If the imperceptibility H(p(W | I)) is small,
H(p(W)) ≈ H(p(I)), so coding W will not incur coding overhead.

But if s is very large, the imperceptibility H(p(W | I)) can be large according to Proposition 2. In
this case, the representation I = γ(W) is not good for either recognition or coding. For recognition, W
cannot be estimated with much certainty. For coding, if we still code W first, and code I by I = γ(W),
this will not be an efficient coding, since H(p(W)) can be much larger than H(p(I)), and the difference is
imperceptibilityH(p(W | I)).

Then what should we do? The regime of s > sbound is quite puzzling for vision modeling. Our
knowledge about geometry, optics, and mechanics enables us to model every phenomenon in our physical
environment. Such models may be sufficient for computer graphics as far as generating physically realistic
images is concerned. For instance, a garden scene can be constructed by simulating billions of leaves and

220

grass strands, and the image can be produced by projecting these billions of objects onto the image with
perspective geometry. A river scene, a fire scene or a smoke scene can be obtained using computational
fluid dynamics. A piece of cloth can be generated using a dense set of particles that follow the law of
mechanics. Realistic lighting can be simulated by ray tracing and optics. But such models are hardly
meaningful for vision, because the imperceptibilities of the underlying elements or variables are intolerable.
When we look at a garden scene, we never really perceive every leaf or every strand of grass. When we
look at a river scene, we do not perceive the constituent elements used in fluid dynamics. When we look
at a scene with sophisticated lighting and reflection, we do not trace back the light rays. In those situations
where physical variables are not perceptible due to scaling or other aspects of image formation process, it
is quite a challenge to come up with good models for the observed images. Such models do not have to be
physically realistic, but they should generate visually realistic images, so that such models can be employed
to interpret the observed image at a level of sophistication that is comparable to human vision.

The following are some of our simple theoretical considerations of this problem from the perspectives
of recognition and coding. We shall become more concrete on the modeling issue in subsequent sections.

Suppose the image I is reduced to an image I− = R(I), so that W cannot be reliably inferred. Then,
instead of pursuing a detailed description W from I−, we may choose to estimate some aspects of W from
I−. For instance, in the simulated ivy wall example, we may estimate properties of the overall distribution
of colors of leaves, as well as the overall distribution of their sizes, etc. Let’s call it W− = ρ(W), with
ρ being a many to one reduction function. It is possible that we can estimate W− from I− because of the
following result.

Proposition 3. Let W ∼ p(W), I = γ(W), and W− = ρ(W), I− = R(I), where both ρ and R are many
to one mappings, we have

(1) H(p(W−|I−)) ≤ H(p(W |I−)).

(2) p(I−|W−) =

∑
W :ρ(W)=W−;R(γ(W))=I−

p(W)∑
W :ρ(W)=W−

p(W)
.

Result (1) tells us that even if W is imperceptible from I−, W− may still be perceptible. Result (2)
tells us that although W defines I deterministically via I = γ(W), W− may only define I− statistically
via a probability distribution p(I−|W−). While W represents deterministic structures, W− may only rep-
resent some texture properties. Thus, we have a transition from a deterministic representation of the image
intensities I = γ(W) to a statistical characterization I− ∼ p(I−|W−). See Figure (10.6) for an illustration.

For an image I, we may extract F (I), which can be a dimension reduction or a statistical summary, so
that F (I) contains as much information about I as possible as far asW orW− is concerned. In the following
proposition, we shall not distinguish between (W, I) and (W−, I−) for notational uniformity.

Proposition 4. Let F = F (I),
(1) If W ∼ p(W), I = γ(W), then KL(p(W |I)||p(W |F)) = H(p(I|F)).
(2) If W ∼ p(W) and [I|W] ∼ p(I|W), then KL(p(W |I)||p(W |F)) =M(W, I|F), whereM(W, I|F) =
EW,I {log[p(W, I|F)/(p(W |F)p(I|F))]} is the mutual information between W and I given F .

Result (1) tells us that for F (I) to contain as much information about W as possible, we want to make
H(p(I|F)) to be as small as possible, so that F can be used to reconstruct I accurately. Result (2) tells us
that if we want to estimate W , we want F to be sufficient about I as far as W is concerned.M(W, I|F) can
be considered a measure of sufficiency.

Now let’s study this issue from the coding perspective. Suppose the image I follows a true distri-
bution f(I), and we use a model w ∼ p(w), and [I | w] ∼ p(I | w) to code I ∼ f(I). Here the

221

variable w is augmented solely for the purpose of coding. It might be some w = W− = ρ(W), or it
may not have any correspondence to the reality W . In the coding scheme, for an image I, we first esti-
mate w by a sample from the posterior distribution p(w|I), then we code w by p(w) with coding length
− log p(w). After that, we code I by p(I|w) with coding length − log p(I|w). So the average coding length
is −Ef

[
Ep(w|I)(log p(w) + log p(I|w))

]
.

Proposition 5. The average coding length is Ef [H(p(w|I))] + KL(f(I)||p(I)) + H(f), where p(I) =∑
w p(w)p(I | w) is the marginal distribution of I under the model. So, coding redundancy = impercepti-

bility + model bias.

The above proposition provides a selection criterion for models with latent variables. The impercepti-
bility term comes up because we assume a coding scheme where w must be coded first, and then I is coded
based on w. Given the latent variable structure of the model, it is very natural to assume such a coding
scheme.

10.3 A Continuous Spectrum

Figure 10.7: The image contains patterns of different complexities, from very simple patterns such as geo-
metric patterns to very random patterns such as leaves at far distance.

Image patterns of different entropy regimes are not only connected by image scaling, they co-exist and
blend seamlessly in a single image. For instance, imagine we are in a wood of maple trees and taking a
picture. The patterns displayed in Fig.10.1 may appear together in the picture we take, because the maple
leaves can appear at different distances from the camera when the picture is taken. In addition, even for the
same objects in a fixed image, when we analyze this image at multiple resolutions, we may recognize pat-
terns from different regimes. The close connection between different regimes calls for a common theoretical
framework for modeling patterns in these regimes. In particular, it calls for the integration of the MRFs and
sparse coding models that work well in high-entropy regime and low-entropy regime respectively.

10.4 Two Coding Schemes

In this section, we shall examine two concrete classes of image models and analyze their entropy behaviors.
The image coding theories can be traced back to Fourier and harmonic analysis, where I is represented

as a linear combination of a dictionary of image bases Γ = {Γi, i = 1, ..., N}:

222

I =

N∑
i=1

ciΓi + ε, Γi ∈ Γ, C = {ci} ∼ p(C), (10.10)

where ci are coefficients, ε is the residual, and ε ∼ iid N(0, σ2). If Γ consists of orthogonal sine waves,
then the model reduces to Fourier analysis. Many other dictionaries have been proposed in the literature
and they can be used in combination. The dictionaries are often over-complete, i.e., for an image I defined
on lattice D, N � |D|. In the proposed work, Γ is a collection of Gabor wavelets {Gx,s,θ}, so i indexes
(x, s, θ), i.e., (location, scale, orientation).

For over-complete Γ, the coefficients C = (ci, i = 1, ..., N) cannot be uniquely determined. The
guiding principle for inferring the coefficients is sparsity, which holds that for each image I, only a small
number of coefficients should be significantly different from 0. The sparsity can be modeled by probability
distributions with probability mass concentrated at 0, but with long tails to account for occasionally large
values, e.g., p(C) =

∏
i p(ci), p(ci) ∝ e−α|ci|. The sparsity can also be measured by norms such as the

weak `ρ-norm.
The above characterizations of sparsity are continuous without explicit selection. For the purpose of

image modeling, we need to select a small subset {Bk, k = 1, ...,K} ⊂ Γ to represent I, so that the
projection of I onto the subspace spanned by {Bk} explains as much variation in I as possible. Here we
would like to clarify that each Bk is a Γi for some i ∈ {1, ..., N}. If we use Gabor bases, then each Bk is
a Gx,s,θ for some (x, s, θ). Because of sparsity, K � |D| � N . This is essentially the variable selection
problem in linear regression.

There are two problems with sparse coding though. 1) The textures are not well represented. 2) The
pattern formed by the selected bases are not modeled. The model has no concepts such as lines.

The sparse coding model is limited to low-entropy regime. We can rewrite model (10.10) in matrix form
C ∼ p(C), I = J + ε, and J = ΓC, where I and J become vectors, Γ is the matrix composed of all
the bases {Γi}, and C is the vector consisting of all the {ci}. For a distribution p(x), define its entropy by
H(p) = −

∫
p(x) log p(x)dx [38]. If p(C) is very sparse, thenH(p(C)) is small.

Proposition 6. Let p(J) be the distribution of J = ΓC,H(p(J)) ≤ H(p(C)) + log |det(ΓΓ′)|/2.
In contrast to sparse coding models that represent the image explicitly, the MRF models summarize the

image by some feature statistics. For instance, when one views the leaves at far distance, one gathers a
texture impression without identifying the individual leaves. One has to drop many variables such as the po-
sitions and shapes of the individual leaves as they cannot be inferred unambiguously, and pool together some
spatial statistics over the image. It has long been observed in psychophysics that human visual perception
cannot distinguish two texture regions if they share certain spatial statistics.

Recall the dictionary of Gabor wavelets {Gx,s,θ}. In the sparse coding model, a small number of Gx,s,θ
with specific locations x are selected, and they are denoted by {Bk, k = 1, ...,K}. In contract, in texture
model, if a filter Gs,θ is selected, it is applied to every pixel x ∈ D to get the responses [Gs,θ ∗ I](x) =
〈I, Gx,s,θ〉, and these responses are to be pooled over all x ∈ D into a marginal histogram, while discarding
the location information.

Specifically, let {Gm,m = 1, ...,M} be a set of filters selected to model an image I, where each
Gm is a Gs,θ for some (s, θ). By pooling the filter responses [Gm ∗ I](x) = 〈I, Gx,m〉 over x ∈ D,
one obtains a histogram. Specifically, we divide the range of [Gm ∗ I](x) into T bins ∆1, ...,∆T , so that
Hm,t(I) =

∑
x∈D 1[Gm∗I](x)∈∆t

counts the number of [Gm∗I](x) that fall into the t-th bin, t = 1, ..., T . Let
hm,t(I) = Hm,t(I)/|D| be the normalized marginal histogram. For simplicity, we write Hm = (Hm,t, t =
1, ..., T), and hm = (hm,t, t = 1, ..., T). Wu, Zhu, and Liu (2000) defined the following image ensemble:

Ω = {I : hm(I) = hm(Iobs),m = 1, ...,M}. (10.11)

223

If the set of marginal histograms {hm} captures the texture information in Iobs, then all the images in the
ensemble Ω should share the same texture pattern. So we can model the image Iobs as a random sample
from the uniform distribution over Ω. In order to select a set of {Gm,m = 1, ...,M} to model a texture
image Iobs, we want the resulting Ω defined in (10.11) to have minimum volume |Ω| or entropy log |Ω|,
or to have maximum log-likelihood − log |Ω|. log |Ω| measures how well {Gm,m = 1, ...,M} and their
histograms explain Iobs, and can be used as a criterion for selecting the most informative set of filters.

As observed by Wu, Zhu, and Liu (2000), Unif(Ω) can be made equivalent to MRF model, thanks to
two most profound results in statistical physics and information theory respectively.

1) According to equivalence of ensembles in statistical physics, for any fixed part of the image lattice
D0 ⊂ D, under Unif(Ω), as |D| → ∞, the distribution of the image intensities on the fixed D0, ID0 ,
converges to the so-called FRAME (filters, random field, and maximum entropy) model developed by Zhu,
Wu, and Mumford

p(ID0 ; Λ) =
1

Z(Λ)
exp{

M∑
1

〈λm, Hm(ID0)〉}, (10.12)

where Λ = (λm,m = 1, ...,M), λm = (λm,t, t = 1, ..., T), and Z(Λ) is the normalizing constant.
2) According to asymptotic equipartition property in information theory, as |D| → ∞, the FRAME

model p(ID; Λ) of the form defined by (11.3) (with D0 replaced by D) concentrates its probability mass
uniformly on the image ensemble Ω of the form (10.11).

In the FRAME model p(I; Λ) , Λ can be estimated by maximizing the log-likelihood log p(Iobs; Λ),
which amounts to solving the estimating equation EΛ[Hm(I)] = Hm(Iobs) for m = 1, ...,M . The entropy
log |Ω| can be approximated by − log p(Iobs; ΛMLE). The FRAME model extends the traditional clique-
based MRF models by using filters and statistics that are relevant to vision. The feature statistics in FRAME
models are not limited to marginal histograms of filter responses. It can be any spatial statistics pooled over
x ∈ D.

The FRAME model only specifies the marginal distributions of filter responses, it cannot represent large
regular structures such as lines. The FRAME model works well for the high-entropy regime. For two
distributions, define the Kullback-Leibler divergence byH(q|p) =

∫
log(q(x)/p(x))q(x)dx.

Proposition 7. Let p(I) be the FRAME model. For any distribution q(I) such that Eq[hm(I)] = Ep[hm(I)], ∀m,
we have H(q|p) = H(p) − H(q) ≥ 0. So the FRAME model always approaches the entropy of the true
distribution from above.

10.5 Perceptual Scale Space

When an image is viewed at varying resolutions, it is known to create discrete perceptual jumps or transitions
amid the continuous intensity changes. Wang and Zhu (2002) studied a perceptual scale-space theory which
differs from the traditional image scale-space theory in two aspects. (i) In representation, the perceptual
scale-space adopts a full generative model. From a Gaussian pyramid it computes a sketch pyramid where
each layer is a primal sketch representation – an attribute graph whose elements are image primitives for
the image structures. Each primal sketch graph generates the image in the Gaussian pyramid, and the
changes between the primal sketch graphs in adjacent layers are represented by a set of basic and composite
graph operators to account for the perceptual transitions. (ii) In computation, the sketch pyramid and
graph operators are inferred, as hidden variables, from the images through Bayesian inference by stochastic
algorithm, in contrast to the deterministic transforms or feature extraction, such as computing zero-crossings,
extremal points, and inflection points in the image scale-space. Studying the perceptual transitions under the

224

Figure 10.8: Scale-space of a 1D signal. (a) A toaster image from which a line is taken as the 1D signal. (b)
Trajectories of zero-crossings of the 2nd derivative of the 1D signal. The finest scale is at the bottom. (c)
The 1D signal at different scales. The black segments on the curves correspond to primal sketch primitives
(step edge or bar). (d) A symbolic representation of the sketch in scale-space with three types of transitions.

Bayesian framework makes it convenient to use the statistical modeling and learning tools for (a) modeling
the Gestalt properties of the sketch graph, such as continuity and parallelism etc; (b) learning the most
frequent graph operators, i.e. perceptual transitions, in image scaling; and (c) learning the prior probabilities
of the graph operators conditioning on their local neighboring sketch graph structures.

In experiments, they learn the parameters and decision thresholds through human experiments, and
we show that the sketch pyramid is a more parsimonious representation than a multi-resolution Gaus-
sian/Wavelet pyramid. They also demonstrate an application on adaptive image display – showing a large
image in a small screen (say PDA) through a selective tour of its image pyramid. In this application, the
sketch pyramid provides a means for calculating information gain in zooming-in different areas of an image
by counting a number of operators expanding the primal sketches, such that the maximum information is
displayed in a given number of frames.

10.6 Perceptibility, Metastability, and the Energy Landscape

The distribution of images in the image space ΩI ⊂ RN defined by an energy function U : ΩI → R

can be understood as manifold, or landscape, of dimension RN in the high-dimensional space RN+1. The
energy function is given by U = − log f , where f is a density over ΩI . High-probability states of f are
low-energy (stable) states of U , and low-probability states of f are high-energy (unstable) states of U . The
energy function is analogous to an elevation function that maps a latitude and longitude coordinate inR2 to
an elevation in R. The surface of the landscape given by the elevation map is a 2D manifold in 3D space,
and the same intuition extends to higher dimensions. The energy function U defines a geodesic distance
measure and non-Euclidean geometry over ΩI that incorporates the "elevation" information given by U to
alter the usual Euclidean measure of distance onRN . This characterization of a distribution of images leads
to a geometric understanding of perceptibility based on the physical idea of metastability [100].

In a broad sense, a metastable system is a system that appears to be in equilibrium when viewed over
short time periods but which deviates substantially from the short-scale quasi-equilibrium over long time
periods. The concept of metastability provides a framework for understanding the structure of a density f
by observing quasi-equilibrium behavior in the physical system associated with the landscape of U .

One can computationally simulate a diffusion process in the physical system of U by obtaining MCMC

225

Figure 10.9: The meaningful structures of
image density can be intuitively understood
as high-density regions in our universe.
The majority of the image universe con-
sists of empty space that represents appear-
ances not observed within the training set.
Texton-scale images are analogous to star
clusters with stable substructure that en-
ables recognition of a distinct appearance.
Texture-scale images are analogous to neb-
ulae that whose mass covers a wide area but
which contain little recognizable substruc-
ture. The gravitational pull of these struc-
tures is analogous to the metastable behav-
ior of MCMC chains, which enables effi-
cient mapping of macroscopic energy fea-
tures.

samples with a steady-state f . In virtually all situations, the MCMC sampler is theoretically ergodic with
respect to ΩI , meaning that the sampling process on f will eventually visit every image I in the image space
with probability 1 if the sampling is continued for a sufficient number of steps. On the other hand, it is
well-known that local MCMC samplers have difficulty mixing between separate modes, which is usually
considered a major drawback of MCMC methods. However, the slow mixing and high autocorrelation
of local MCMC samples is actually a manifestation of metastable phenomena in the landscape of U that
provide a means of understanding f .

A density f that models realistic images will have an astronomical abundance of local modes the rep-
resent the diverse variety of possible appearances along the data manifold in the image space. On the other
hand, groups of related minima that represent similar images often merge in the landscape of U to form
macroscopic basins or funnels that capture consistent clusters or concepts of images found in the training
data. The macroscopic basins are contained regions that permit diffusion interiorly but which are separated
by energy barriers that dramatically decrease the probability of cross-basin diffusion. Therefore, one can
identify concepts within an image density f by identifying the metastable regions of the energy landscape. It
is important to remember that metastable behavior often exists across a continuous spectrum of time-scales,
so there is no ground truth for the correct metastable structure and/or conceptual clustering of f . Instead, the
metastable description provides a natural way to explore the concepts within a density at a range of degrees
of visual similarity, permitting "coarser" or "finer" mappings depending on the context.

We can intuitively understand the structure of the energy landscape of natural images by considering ΩI

as a "universe" of images. The high energy/low probability regions ofU are empty space, which accounts for
the vast majority of the volume of ΩI . The low-energy regions and local modes of U represent high-density
regions. Low-energy regions that represent texton-scale images are concentrated structures like stars, while
low-energy regions representing texture are more diffuse and loose structures like nebulas. Groups of related
stars and nebulae form galaxies which represent general concepts within the image data, as in Figure 10.9.

The discussion above reveals an important connection between visual perceptibility of difference among
a population of images with density f and metastable structures in the energy landscape U . A realistic
image following f will have its own associated local minima region that captures a single stable appear-

226

ance. The barriers between realistic images should depend on the degree of similarity between images.
Images that share a similar appearance will be separated by lower energy barriers because it is possible to
smoothly transition between similar images without encountering low probability/high energy/unrealistic
images along the interpolation path. Images with dramatically different appearances should be separated
by much higher barriers because it will be necessary to encounter low probability/high energy/unrealistic
images while smoothly transforming between differing appearances.

For example, it is possible to smoothly transition between two images of the digit 1 while still maintain-
ing the appearance of the digit 1 throughout the interpolation path, but it is not possible to transition from the
digit 1 to the digit 0 (or any other digit) without encountering an image that does not resemble a digit at all.
Groups of similar images separated by low energy barriers form metastable regions of U , establishing the
connection between visual perception of differences between images and metastable structure in the energy
landscape.

Metastable phenomena are a natural way of representing both structure and variation in complex con-
cepts, but actually detecting metastable behavior in a given energy landscape is a challenging task. Intu-
itively, two MCMC samples initialized from the same energy basin should meet much more quickly than
two MCMC samples initialized from separate energy basins. However, the "short" mixing time of two
chains in the same metastable basin is still far too long for efficient simulation in high-dimensional spaces.
No chains, either from the same or separate energy basins, are likely to meet in feasible time scales. There-
fore direct observation of membership in a metastable basin is not possible with MCMC simulation.

To overcome the difficulty of detecting metastable
phenomena in their natural state, we perturb the energy
landscape in a way that will accelerate mixing within a
metastable basin while preserving the long mixing-times
between separate energy basins. If the perturbation is suf-
ficiently small then it is reasonable to expect metastable
phenomena in the original and altered landscape will be
very similar. On the other hand, the perturbation must be
strong enough to overcome shallow energy barriers that
exist within a metastable basin to encourage fast mixing
between modes within the same macroscopic basin.

Drawing inspiration from the magnetized Ising
model, we modify the original energy landscape with an
L2 penalty towards a known low-energy image. The tar-
get of the L2 penalty acts as a "representative" of the en-
ergy basin to which it belongs. Given an candidate mode
x0 and a target mode x∗, initialize an MCMC sample X
from x0 and update the sample using the magnetized en-
ergy

Umag(x) = U(x) + α‖x− x∗‖2
where U is the original energy function and α is the
strength of magnetization. Sampling is continued until either the MCMC sample X comes with a small
Euclidean distance ε of the target state x∗ or until an upper limit on the number of steps is reached. Since
d
dx‖x− x∗‖2 = x−x∗

‖x−x∗‖2 , the gradient of the magnetization penalty α‖x− x∗‖2 is a vector with magnitude
α pointing towards x∗ for every point x 6= x∗. This shows that the gradient of Umag differs from the gradient
of U by a magnitude of at most α throughout the state space, allowing us to uniformly control the degree of
landscape perturbation in a single parameter. We call this method Attraction-Diffusion (AD).

227

It is clear that in the limiting case α→ 0, sampling on Umag is identical to sampling on U and thatX will
never come within a close distance of x∗ even when x0 and x∗ are in the same metastable basin. On the other
hand, in the limiting case α→∞ all probability mass is focused on x∗ and X will quickly reach the target
state. In between these limiting cases there exists a spectrum of values for α for which the gradients from
the original energy U and the magnetization penalty α‖x− x∗‖2 affect sampling at approximately the same
magnitude. Within this spectrum, one observes that sometimes the diffusion paths reach their target x∗ and
sometimes the diffusion paths never reach their target. If we consider successful travel in the magnetized
landscape to approximately represent metastable membership in the original landscape, then it becomes
possible to reason about metastable structures in the original landscape based on the finite-step behavior of
MCMC samples in the magnetized landscape. We note that metastable structures at finer resolutions can be
detected when α is relatively small, while larger values of α will only preserve the most prominent barriers
in the landscape. Like real-world concepts, metastable concepts only exist within a certain spectrum of
identity or difference depending on the context of the situation.

Figure 10.10: Construction of a Disconnectivity Graph (right) from a 1D energy landscape (left). The DG
encodes the depth of local minima and the energy at which basins merge. The same procedure can be used
to hierarchically cluster image concepts using an energy function U over the image space.

Now that we are equipped with a method for determining whether two minima belong to the same
metastable basin, it becomes possible to efficiently identify the different metastable structures in an arbitrary
high-dimensional energy landscape using computational methods. This process allows to extend techniques
for mapping and visualizing energy landscapes from the chemical physics literature to energy functions
defined over the image space. The physical system defined by a low-temperature diffusion process has
metastable structures that to correspond to concepts learned by the energy function.

The analogy between stable states of a physical system (e.g. states with predominantly aligned spins
in the Ising model) and recognizable concepts within groups of images allows us to hierarchically cluster
the image space by first identifying metastable regions then grouping regions based on the energy spectrum
at which basins merge. The results can be displayed in a tree diagram known as a Disconnectivity Graph
(DG). A Disconnectivity Graph displays 1) the minimum energy within each basin (leaves of the tree), 2)
the energy level at which basins merge in the energy landscape, also called the energy barrier (branches of
the tree), as shown in Figure 10.10 The key concept underlying this procedure is the idea that perceptibility
can be grounded in metastable phenomena in an energy landscape that represents perceptual memory.

We demonstrate the principles of the above discussion by mapping a learned energy landscape U that
has been trained to model MNIST. It is important to note that the true density of an image concept is never
known and that mapping must be done on a learned density. U is a computational representation of a

228

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Minima Index

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

E
n
e
rg

y

10
7 ADELM DG for Digits (Latent Space)

Figure 10.11: Map of the energy landscape of an image density trained with image patches from an ivy
texture at four scales. The closest two scales develop recognizable and separate basins in the landscape that
represent distinguishable patterns. The furthest two scales do not contain perceptible subgroups and form
flat nebula-like basins that encode texture appearance.

large set of observed images, much like our memory creates perceptual models of structured images that
we regularly observe. The macroscopic energy structures of U can effectively distinguish between different
image groups (digits) that are recognizable to humans. Each digit has at least one stable basin that represents
the digit appearance, and relations between image basins follow visually intuitive relations between images.

Scale
1
Scale
2
Scale
3
Scale
4

Figure 10.12: Ivy texture image and image patches from four scales. The first two scales contain images
which can be clustered by a human. The images cross the perceptibility threshold from texton representation
to texture representation between Scale 2 and Scale 3.

The link between perceptibility and metastability can also be clearly observed when mapping the density
of image patches from a single texture at a variety of different scales. The density f models 32 × 32 pixel
image patches of the same ivy texture image from four different scales (see Figure 10.12). At the closest
scale, the images are composed of simple bar and stripe features. The second-closest scale features the
composition of about 2 or 3 leaves in different arrangements. At the furthest two scales, it is difficult to
distinguish distinct image groups and images from these scales are perceived as textures by a human.

The metastable structure of U = − log f shares many similarities with human perceptibility (see Fig-

229

ure 10.13). Image groups from the closest scale are easiest to recognize and the landscape forms a handful
of strong basins that represent the different bar and stripe configurations found at close range. A rich variety
of separate metastable basins appear at Scale 2 to encode many distinct composition of a few leaves. The
landscape represents images from Scales 3 and 4 with a large macroscopic basin with little substructure. Be-
tween Scale 2 and Scale 3, a phase transition occurs where the identifiability of leaf compositions changes
from distinguishable (texton scale) to indistinguishable (texture scale). The behavior of human perceptibility
and image landscape metastability are therefore quite similar across multi-scale image data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

Minima Index

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

E
n

e
rg

y

10
7 ADELM DG for Multiscale Ivy (Latent Space)

Scale 1

Scale 2

Scale 3

Scale 4

Figure 10.13: Map of the energy landscape of an image density trained with image patches from an ivy
texture at four scales. The closest two scales develop recognizable and separate basins in the landscape that
represent distinguishable patterns. The furthest two scales do not contain perceptible subgroups and form
flat nebula-like basins that encode texture appearance.

230

11

Image Models with Multilayer Neural
Networks

In earlier chapters, we followed Marr’s traditional vision and desired to integrate high-entropy (e.g. texture)
and low-entropy (e.g. textons) regimes into primal sketch models. It appears that Markov random fields in
the form of the FRAME model are preferable for high-entropy regimes whereas a sparse-coding model is
limited to the low-entropy regime. However, with advances in deep convolutional networks (ConvNets) we
may generalize both, the FRAME model and sparse coding, to cover the entire spectrum of entropy. .

In this chapter, we will present the DeepFRAME model as a recursive multi-layer generalization of
the original FRAME model, and, the Generator model which can be considered a non-linear multi-layer
generalization of the factor analysis model. Such multi-layer models capture the fact that visual patterns and
concepts appear at multiple layers of abstractions.

11.1 Deep FRAME

IThe FRAME (Filters, Random fields, And Maximum Entropy) model is a Markov random field model of
stationary spatial processes such as stochastic textures. The log probability density function of the model is
the sum of translation-invariant potential functions that are point-wise one-dimensional non-linear transfor-
mations of linear filter responses. It specifies a probability distribution on the signal I via an energy function
that is a linear combination of the features,

pθ(I) =
1

Z(θ)
exp

[
h(I)>θ

]
p0(I), (11.1)

where h(I) is the d-dimensional feature vector extracted from I, and θ is the d-dimensional vector of weight
parameters. p0(I) is a known reference distribution such as the white noise model I ∼ N(0, σ2Ip), or the
uniform distribution within a bounded range.

Z(θ) =

∫
exp[h(I)>θ]p0(I)dI = Ep0{exp[h(I)>θ]} (11.2)

is the normalizing constant (Ep denotes the expectation with respect to p). It is analytically intractable.
In FRAME model, h(I) consists of histograms of responses from a bank of filters. In a simplified non-

convolutional version, h(I)>θ = f(W I) =
∑d

k=1 fk(WkI), where W is a d× p matrix, and Wk is the k-th
row of W . W I consists of the d filter responses with each row of W being a linear filter. (fk, k = 1, ..., d)

231

Figure 11.1: Two types of potential functions learned by [276] from natural images. The function on the
left encourages big filter responses and creates patterns via reaction, while the function on the right prefers
small filter responses and smoothes out the synthesized image via diffusion.

are d one-dimensional potential functions applied respectively to the d elements of W I. In the FRAME
model, the rows of W are a bank of Gabor wavelets or filters [43]. Given the filters, [276] learned the
potential functions (−fk, k = 1, ..., d) from natural images. There are two types of potential functions
as shown in Figure 12.2 taken from [276]. The function on the left encourages big filter responses while
the function on the right prefers small filter responses. [276] used the Langevin dynamics to sample from
the learned model. The gradient descent component of the dynamics is interpreted as the Gibbs Reaction
And Diffusion Equations (GRADE), where the function on the left of Figure 12.2 is for reaction to create
patterns, while the function on the right is for diffusion to smooth out the synthesized image.

Figure 11.2: Learning a two dimensional FRAME model by sequentially adding rows to W [153]. Each
row of W corresponds to a projection of the data. Each step finds the projection that reveals the maximum
difference between the observed data and the synthesized data generated by the current model.

The DeepFRAME generalization of the FRAME model is inspired by the successes of deep convolu-
tional neural network [139, 141], and it can be called the deep FRAME model [157]. The filters used in
the original FRAME model are linear filters that capture local image features. In the deep FRAME model,
the linear filters are replaced by the non-linear filters at a certain convolutional layer of a pre-trained deep
ConvNet. Such filters can capture more complex patterns, and the deep FRAME model built on such filters
can be more expressive.

Instead of using filters from a pre-trained ConvNet, we can also learn the filters from the observed
data. The resulting model is a deep convolutional energy-based model [41, 182, 261]. Such a model can be
considered a recursive multi-layer generalization of the original FRAME model. The log probability density
function of the original FRAME model consists of non-linear transformations of linear filter responses. If
we repeat this structure recursively, we get the generative ConvNet model with multiple layers of linear
filtering followed by point-wise non-linear transformations. It is possible to learn such a model from natural

232

images [261].
We can generate synthetic images by sampling from the above FRAME models using Markov chain

Monte Carlo (MCMC) such as the Langevin dynamics [82,156], which runs gradient descent on the energy
function of the model while adding Gaussian white noises. This sampling scheme was first applied to the
original FRAME model by Zhu and Mumford (1998) [278], where the gradient descent part of the dynamics
was interpreted as the Gibbs Reaction And Diffusion Equation (GRADE). The Langevin dynamics can
be used to sample from deep FRAME model where the gradient can be efficiently computed by back-
propagation.

The FRAME model can be written as exponential tilting of a reference distribution such as the uniform
measure or the Gaussian white noise model. If the reference distribution is the Gaussian white noise model,
the local modes of the probability density follow an auto-encoder. We call it the Hopfield auto-encoder,
because it defines the local energy minima of the model [107]. In the Hopfield auto-encoder, the bottom-
up filters detect the patterns corresponding to the filters, then the binary detection results are used as the
coefficients in the top-down representation where the original filters play the role of basis functions.

The learning of the FRAME model follows an analysis by synthesis scheme [87]. We can use the
Langevin dynamics to sample from the current model to generate synthetic images. Then we update the
model parameters based on the statistical difference between the observed images and the synthetic images,
so that the model shifts its probability density function, especially the high density regions or the low energy
regions, from the synthetic images to the observed images. In the zero temperature limit, this learning and
sampling algorithm admits an adversarial interpretation, where the learning step and the sampling step play
a minimax game based on a value function.

The sampling of the FRAME model requires iterative MCMC such as Langevin dynamics or Hamilto-
nian Monte Carlo [180]. A generator model [83, 132, 174, 201] can be recruited as a much more efficient
non-iterative approximate sampler that replaces the MCMC sampling by direct ancestral sampling.

The original FRAME model [257,278,279] for texture patterns is a stationary or spatially homogeneous
Markov random field model [18, 79] defined by the following probability distribution:

p(I;λ) =
1

Z(λ)
exp

[
K∑
k=1

∑
x∈D

λk ([Fk ∗ I](I))

]
, (11.3)

where each λk() is a one-dimensional non-linear function to be estimated from the training data, λ =
(λk(), k = 1, ...,K), and Z(λ) is the normalizing constant that makes p(I;λ) integrate to 1. Model (11.3)
is stationary because the function λk() does not depend on position I.

λk() can be further parametrized, e.g„ λk(r) = wkh(r) for some given h(), to make (11.3) an exponen-
tial family model.

As a Markov random field model or a Gibbs distribution, the FRAME model represents the potential
functions in the form of λk ([Fk ∗ I](x)), i.e., non-linear transformations of filter responses. The model
achieves the maximum entropy among all the distributions with fixed marginal distributions of Fk ∗ I(x) for
k = 1, ...,K.

The filters {Fk} can be designed, such as the Gabor filters, or be learned from the data together with λk.
In the deep FRAME model, the filters are non-linear filters in a ConvNet. We can either use pre-trained

ConvNet or train all the filters together with the coefficients. In the following sections, we will first explain
why going deep gives us more powerful model from the perspective of matching statistics. Then we will
review the ConvNet and finally present the deep FRAME model.

233

11.1.1 From FRAME to deep FRAME

In this section, we will gradually go from single layer FRAME model trained with pursuit method to multi-
layer deep FRAME model trained with gradient desent method. Our discussion will focus on the sufficient
statistics used by the model.

As shown in 11.3, the energy term in the FRAME model is the linear combination of λk(), which is a
one-dimensional non-linear function of the filter responses. Recall our discussion in Chapter 7, the FRAME
model uses the histogram of the filter responses. Assume we denote the kth filter response as Ik:

λk

(
Ik
)

=
B∑
b=1

λkbHkb (11.4)

Hkb = δ
(
zb − Ik

)
, (11.5)

where b = 1..B represents the B bins we have for the histogram and zb is the center value of the bth bin.
This formulation requires that the fitted probability matches the underlying distribution on the marginal
distribution of the filter response. As we have discussed in Chapter 9, this is done by pursuing a sequence
of models that get closer and closer to the target distribution. Consider a simple case where data locates in
2D plane (see Figure 11.3). Here, the filter response can be represented as a line in the 2D plane. If we use
a linear filter, then the response is a straight line and contour lines (data on the same contour line has the
same response value) are a group of parallel straight lines perpendicular to the response line. On the other
hand, if non-linear filter is used, then the response line can be a curve and the corresponding contour lines
can also be curve that perpendicular to the response curve. In the FRAME model, we use linear filters and
we match the statistics in each bin of the histograms.

Figure 11.3: In 2D plane, the responses of a linear filter can be represented as a straight line (shown in
figure a). The FRAME model uses histogram and requires the fitted distribution to match the underlying
distribution along this response line. The distribution is represented by the expectation values in different
bins (shown by parallel contour lines in the figure). The ReLU function (shown in figure b and c) clips the
negative value(shadow area) to zero and requires the fitted distribution to match the underlying distribution
on the expectation of this clipped filter response. We use red dotted line to shown the contour line of the
expected value of the ReLU function in the figures. In b, we show a linear filter with straight contour line
while in c we show a non-liner filter with broken line as contour line. In the later discussion, we will further
explain that b and c can correspond to neuron responses from different layers of a neuron network.

Now we consider another λk() function. Instead of using histogram, we can use ReLu function, which

234

defines as:

λk

(
Ik
)

= ReLU(Ik) = max
(

0, Ik
)
, (11.6)

In a ReLU function, all the filter responses smaller than zero will be clipped to zero. If we further add
a variable bias term to the filter response. Then the values are smaller than the negative bias term will
be clipped to zero and the ReLU function becomes a line that partitions the space. We can consider the
histogram function used in the FRAME model as using multiple lines (represented as different bias terms)
as matching statistics after choosing a direction, while the ReLu function only use one line at a time. This
enables the model with ReLU function to locate less lines to the directions that are easy to fit.

We can see an example in Figure 11.4. Here we want to fit a distribution consisted of two normal distri-
butions (we have show the same example fitted by FRAME in Chapter 9). The model uses first two filters
(represented by two parallel lines partitioned the space at different position) to constrain the distribution into
a flat strip area. Then it locates more filters (parallel lines) to further tell apart the two areas. After using
8 filters, the model can almost tell the two distributions and further adding more filters will just do small
adjustment. Therefore, we can say that this model uses 2 filters to fit the distribution in one direction and 6
more filters to fit the distribution in another direction. Now we consider what if we use the histogram. In the
histogram model, after choosing a direction, we will apply a fixed number of lines to form the bins. Since
in the second direction, we has to use 6 lines in total to tell the 2 clusters apart, in total we may need 12
lines to partition the space, which means that we use more statistics to describe the underlying distribution.
In other words, using the ReLU function, because we are applying the line one at a time, we can save some
resources on the directions that are easy to describe.

Now we make another change. Instead of using pursuit algorithm, we change to gradient descent al-
gorithm to find the appropriate filters. We fix the number of filters (we can also call them as neurons) and
randomly initialize their initial weights. And we use ReLU as our function (also called activation function).
Then we iteratively update the weight of these filters using gradient descent to maximize the probability of
the true samples. We fit the same distribution and the results are shown in Figure 11.5. We can see that the
models can more or less fit the distribution by partitioning the plane and matching statistics. However, there
are two differences here than the pursuit based models. One of them is that the partitions are not at certain
directions (i.e. they are not groups of parallel lines). Instead, the partitions seem to have large randomness
and some seem to locate at meaningless places. Besides, adding more neurons (i.e. filters) does not always
give us better fitted results. We can see that the best result is got at 7 or 8 neurons instead of 10 (and you
may get totally different results if you run the algorithm again). These observations come from the nature
of gradient descent algorithm we use. Unlike in the pursuit-based algorithm where at each time we pick the
most unmatched filter response and deal with it, in gradient descent algorithm, we just randomly initialize
all the filters and try to find a way to adjust the filter weight together with their coefficients λk so that the
fitted distribution matches the underlying distribution on these filter responses. There can be the case that
some filters just start from or reach some "comfort zone" and stop there. Their responses are automatically
matched when we match other filters’ responses. Therefore, although they are included in the model, these
filters actually do not give us much help in fitting the underlying distribution. The model gets tripped into
a local optimum (where all its current filters get matched statistics) and does not try to find the global opti-
mum as the pursuit algorithm does. In this case, the "effective" neurons may not be equal to the number of
neurons we use in total.

The above discussion seems to support that pursuit algorithm is better than the gradient descent algo-
rithm. However, things may change when we make the model deeper. Here we use multilayer models and
want to train the filters at different layers all together. As we discussed above, gradient descent algorithm
has its intrinsic randomness, therefore, even after we fix the structure, we may get different results. We show

235

Figure 11.4: Pursuit of one layer FRAME model with ReLU. We show the results got pursuit algorithm here.
At each time, we add a new filter to the model. Each filter correponds to one ReLU function. It partitions the
space using a straight line. From subfigure (a) to (j), on the top, we show the true data distribution (shown as
the blue points), partition of the space (in the background) and samples drawn from the current distribution
(shown as the red points). On the bottom, we show the fitted probability function using the chosen filters.

results from a two-layer neural network trainied using two different initializations in Figure 11.6. From these
figures, we can first tell that the fitting result here is pretty good, better than those we get from both pursuit
and gradient descent algorithms in one-layer model. More importantly, different from the one-layer cases,
now the matching statistics are not limited to just straight lines. Shown in subfigure (c) and (e), under one
type of initialization, the model find 2 top-layer neurons with circle-like matching statistics, each of them
circles out one of the data clusters. This means if a data point is fed in the network, then which of these
two neurons is activated can indicate which cluster this data point belongs to. If we only use one of them in
the energy term, then the fitted probability will only concentrate on one part. On the other hand, shown in
subfigure(d), under another initialization, the model find a neuron to circle out the two data cluster together
(making the energy concentrate to the center) and other 2 neurons further tell the two data clusters apart.
This power comes from the introducing of multiple layers. In a multilayer model, the neurons at different
layers have different roles. The neurons at lower layers mainly correspond to partition the input space into
subspaces. Then in each of these subspace, the neurons at upper layers find their matching statistics. The
same statistics at different subspace correspond to lines with different slop and intercept and therefore, they
become broken lines (like the example we showed in subfigure (c) (d) (e)). In other words, the existing of
lower layer neurons enables the higher layer neurons to choose more flexible shape as matching statistics,
which gives the model more fitting power. Note that because of the job-splitting phenomenon, greedily
pursuit neurons layer by layer is not suitable for fitting multi-layer model. A neuron that is good at statistics
matching may not do a good job in partitioning the space for other neurons. Therefore, the gradient descent

236

Figure 11.5: Training one layer FRAME model with ReLU using gradient descent. We show the results got
using gradient descent algorithm here. At each time, we reinitialize a one layer neural network which has
different number of neurons. All the neural networks we trained use ReLU as activation function. These
ReLu functions partition the space by straight lines. From subfigure (a) to (j), on the top, we show the
true data distribution (shown as the blue points), partition of the space (in the background) and samples
drawn from the current distribution (shown as the red points). On the bottom, we show the fitted probability
function using the chosen filters.

algorithm works better in this case.

The power of multilayer model can be seen more clearly when fitting underlying distributions which
have highly irregular shape(texture). Shown in Figure 11.7.The two-layer model can almost capture the
shape of underlying distribution when it has 24 neurons in total. However, even using double number of
neurons (48 in total), the one-layer model still can not fit the distribution very well. It only captures a
triangle-like shape and ignores the subtle shape changes (like the branch in the left side).

In a summary, we shown in this section that using ReLU function to replace histogram enables the
model to choose matching statistics one by one and therefore locates more resource to those hard directions.
Changing pursuit algorithm to gradient descent seems to hurt the performance in single layer model. How-
ever, using gradient descent, we can stack multiple layers to get more powerful model, where the lower layer
neurons helps the high layer neurons to find more flexible statistics. These observations drive us to push the
original FRAME model into deep structure where ConvNet is used.

237

Figure 11.6: Multilayer FRAME model fitted with gradient descent. We use a two-layer model here. The
model has 7 neurons in the first layer and 3 neurons in the second one. We train this model under two differ-
ent initialization. In (a) and (b), we show the fitted densities and space partitions of these two initializations
(we only plot the matching statistics of the second layer neuron here). In (c) and (d), we pick one typical
second layer neuron from each initialization. We shown how the ReLU functions partition the spaces based
on these higher layer neurons (the shadow space corresponds to the negative response places and will be
clipped to 0 by ReLU). We also show the fitted density contributed by each single high layer neuron. (e)
illustrates the idea that each higher layer neuron creates a broken line matching statistics that circles out a
cluster of data points.

238

Figure 11.7: Fitting distribution with highly irregular shape. (a) The underlying distribution.(b) The results
of a two-layer model fitted using gradient descent (16 neurons in the first layer and 8 neurons in the second
layer). (c) The results of a one layer model fitted using pursuit algorithm (use 48 neurons in total)

11.1.2 ConvNet filters

The convolutional neural network (CNN or ConvNet) [141] is a specialized neural network devised for
analyzing signals such as images, where the linear transformations take place around each pixel, i.e., they
are filters or convolutions. See Figure 11.8 for an illustration.

Figure 11.8: Convolutional neural networks consist of multiple layers of filtering and sub-sampling oper-
ations for bottom-up feature extraction, resulting in multiple layers of feature maps and their sub-sampled
versions. The top layer features are used for classification via multinomial logistic regression. The discrim-
inative direction is from image to category, whereas the generative direction is from category to image. This
illustration is adapted from [141].

A ConvNet consists of multiple layers of linear filtering and point-wise non-linear transformation, as
expressed by the following recursive formula:

[F
(l)
j ∗ I](y) = h

Nl−1∑
k=1

∑
x∈§l

w
(l,j)
k,x [F

(l−1)
k ∗ I](y + x) + bl,j

 , (11.7)

or

I
(l)
j (y) = h

Nl−1∑
k=1

∑
x∈§l

w
(l,j)
k,x I

(l−1)
k (y + x) + bl,j

 , (11.8)

239

where l = 1, ..., L indexes the layer, and I
(l)
j = F

(l)
j ∗ I are filtered images or feature maps at layer l. In

Figure 11.8, the feature maps are illustrated by the square shapes. Each [F
(l)
j ∗I](x) is called a filter response

or a feature extracted by a node or a unit at layer l.
{F (l)

j , j = 1, ..., Nl} are the filters at layer l, and {F (l−1)
k , k = 1, ..., Nl−1} are the filters at layer l−1. j

and k are used to index the filters at layers l and l−1 respectively, andNl andNl−1 are the numbers of filters
at layers l and l − 1 respectively. The filters are locally supported, so the range of I in

∑
x is within a local

support §l (such as a 7× 7 image patch). We let I(0) = I. The filter responses at layer l are computed from
the filter responses at layer l−1, by linear filtering defined by the weights w(l,j)

k,x as well as the bias term bl,j ,
followed by the non-linear transformation h(). The mostly commonly used non-linear transformation in the
modern ConvNets is the rectified linear unit (ReLU), h(r) = max(0, r) [139]. {F (l)

j } are non-linear filters

because we incorporate h() in the computation of the filter responses. We call I
(l)
j = F

(l)
j ∗ I the filtered

image or the feature map of filter j at layer l. We denote I(l) = (I
(l)
j , j = 1, ..., Nl), which consists of a total

of Nl feature maps at layer l, and j = 1, ..., Nl. Sometimes, people call I(l) as a whole feature map or filter
image with Nl channels, where each I

(l)
j corresponds to one channel. For a colored image, I(0) = I has 3

channels for RGB.
The filtering operations are often followed by sub-sampling and local-max pooling (e.g., I(x1, x2) ←

max(s1,s2)∈{0,1}2 I(2x1 +s1, 2x2 +s2)). See Figure 11.8 for an illustration of sub-sampling. After a number
of layers with sub-sampling, the filtered images or feature maps are reduced to 1× 1 at the top layer. These
features are then used for classification (e.g., does the image contain a hummingbird or a seagull or a dog)
via multinomial logistic regression.

11.1.3 FRAME with ConvNet filters

Instead of using linear filters as in the original FRAME model, we can use the filters at a certain convolu-
tional layer of a pre-learned ConvNet. We call such a model the deep FRAME model.

Suppose there exists a bank of filters {F (l)
k , k = 1, ...,K} at a certain convolutional layer l of a pre-

learned ConvNet, as recursively defined by (11.7). For an image I defined on the image domain D, let
F

(l)
k ∗ I be the feature map of filter F (l)

k , and let [F
(l)
k ∗ I](x) be the filter response of I to F (l)

k at position
I (again I is a two-dimensional coordinate). We assume that [F

(l)
k ∗ I](x) is the response obtained after

applying the non-linear transformation or rectification function h(). Then the non-stationary deep FRAME
model becomes

p(I; θ) =
1

Z(θ)
exp

[
K∑
k=1

∑
x∈D

wk,x[F
(l)
k ∗ I](x)

]
q(I), (11.9)

where q(I) is again the Gaussian white noise model (4.19) , and w = (wk,x,∀k, x) are the unknown param-
eters to be learned from the training data. Model (11.9) shares the same form as model (4.18) with linear
filters, except that the rectification function h(r) = max(0, r) in model (4.18) is already absorbed in the
ConvNet filters {F (l)

k } in model (11.9). We can also make model (11.9) stationary by letting wk,x = wk for
all I.

11.1.4 Learning and sampling

The basic learning algorithm estimates the unknown parameters w from a set of aligned training images
{Ii, i = 1, ..., n} that come from the same object category. Again the weight parameters w can be esti-
mated by maximizing the log-likelihood function, and w can be computed by the stochastic gradient ascent

240

algorithm [267]:

w
(t+1)
k,x = w

(t)
k,x + γt

[
1

n

n∑
i=1

[F
(l)
k ∗ Ii](x)− 1

ñ

ñ∑
i=1

[F
(l)
k ∗ Ĩi](x)

]
(11.10)

for every k ∈ {1, ...,K} and x ∈ D, where γt is the learning rate, and {Ĩi, i = 1, ..., ñ} are the synthetic
images sampled from p(I;w(t)) using MCMC. This is an analysis by synthesis scheme that seeks to match
the average filter responses of the synthetic images to those of the observed images.

In order to sample from p(I; θ), we adopt the Langevin dynamics [82,156]. Writing the energy function

U(I, θ) = −
K∑
k=1

∑
x∈D

wk,x[F
(l)
k ∗ I](x) +

1

2σ2
||I||2, (11.11)

the Langevin dynamics iterates

Iτ+1 = Iτ − δU ′(Iτ , θ) +
√

2δετ , (11.12)

where U ′(I, θ) = ∂U(I, θ)/∂I. This gradient can be computed by back-propagation. In (12.59), δ is a
small step-size, and ετ ∼ N(0, ID), independently across τ , where ID is the identity matrix of dimension
D = |D|, i.e., the dimensionality of I. ετ is a Gaussian white noise image whose pixel values follow N(0, 1)
independently. Here we use τ to denote the time steps of the Langevin sampling process, because t is used
for the time steps of the learning process. The Langevin sampling process (12.59) is an inner loop within
the learning process (12.35). Between every two consecutive updates of w in the learning process, we run a
finite number of steps of the Langevin dynamics starting from the images generated by the previous iteration
of the learning algorithm.

The Langevin dynamics was first applied to the FRAME model by [278], where the gradient descent
component is interpreted as the Gibbs Reaction And Diffusion Equation (GRADE), and the patterns are
formed via the reactions and diffusions controlled by different types of filters.

Figure 11.9: Generating object patterns. In each row, the left half displays 4 of the training images (224
× 224), and the right half displays 4 of the synthetic images. In the last row, the learned model generates
hybrid patterns of lion and tiger.

We first learn a non-stationary FRAME model (11.9) from images of aligned objects. The images were
collected from the internet. For each category, the number of training images was around 10. We used
ñ = 16 parallel chains for Langevin sampling with 100 Langevin steps between every two consecutive

241

updates of the parameters. Figure 11.9 shows some experiments using filters from the 3rd convolutional
layer of the VGG ConvNet [222], a commonly used pre-learned ConvNet trained on Imagenet ILSVRC2012
dataset [47]. For each experiment on each row, the left half displays 4 of the training images, and the right
half displays 4 of the synthetic images generated by the Langevin dynamics. The last experiment is about
learning the hybrid pattern of lion and tiger. The model re-mixes local image patterns seamlessly.

Figure 11.10: Generating texture patterns. For each category, the first image (224 × 224) is the training
image, and the next 2 images are generated images, except for the last 3 images, where the first 2 are the
training images, and the last one is the generated image that mixes brick wall and ivy.

Figure 11.10 shows results from experiments on the stationary model for texture images. The model
does not require image alignment. It re-shuffles the local patterns seamlessly. Each experiment is illustrated
by 3 images, where the first image is the training image, and the other 2 images are generated by the learning
algorithm. In the last 3 images, the first 2 images are training images, and the last image is generated by the
learned model that mixes the patterns of brick wall and ivy.

11.1.5 Learning a new layer of filters

On top of the existing pre-learned convolutional layer of filters {F (l)
k , k = 1, ...,K}, we can build another

layer of filters {F (l+1)
j , j = 1, ..., J}, according to the recursive formula (11.7), so that

[F
(l+1)
j ∗ I](y) = h

∑
k,x

w
(j)
k,x[F

(l)
k ∗ I](y + x) + bj

 , (11.13)

where h(r) = max(0, r). The set {F (l+1)
j } is like a dictionary of “words” to describe different types of

objects or patterns in the training images.
Due to the recursive nature of ConvNet, the deep FRAME model (11.9) based on filters {F (l)

k } corre-
sponds to a single filter in {F (l+1)

j } at a particular position y (e.g., the origin y = 0) where we assume that
the object appears. In [41], we show that the rectification function h(r) = max(0, r) can be justified by a
mixture model where the object can either appear at a position or not. The bias term is related to− logZ(θ).

Model (11.9) is used to model images where the objects are aligned and are of the same category. For
images of non-aligned objects from multiple categories, we can extend model (11.9) to a convolutional
version with a whole new layer of multiple filters

p(I; θ) =
1

Z(θ)
exp

 J∑
j=1

∑
x∈D

[F
(l+1)
j ∗ I](x)

 q(I), (11.14)

242

where {F (l+1)
j } are defined by (11.13). This model is a product of experts model [101, 205], where each

[F
(l+1)
j ∗ I](x) is an expert about a mixture of an activation or inactivation of an object of type j at position

I. The stationary model for textures is a special case of this model.
Suppose we observe images of non-aligned objects from multiple categories {Ii, i = 1, ..., n}, and we

want to learn a new layer of filters {F (l+1)
j , j = 1, ..., J} by fitting the model (11.14) with (11.13) to the

observed images, where {F (l+1)
j } model different types of objects in these images. This is an unsupervised

learning problem because we do not know where the objects are. The model can still be learned by the
analysis by synthesis scheme as before.

Let L(θ) = 1
n

∑n
i=1 log p(Ii; θ) be the log-likelihood where p(I; θ) is defined by (11.14) and (11.13).

Then the gradient ascent learning algorithm is based on

∂L(θ)

∂w
(j)
k,x

=
1

n

n∑
i=1

∑
y∈D

sj,y(Ii)[F
(l)
k ∗ Ii](y + x)− Ew

∑
y∈D

sj,y(I)[F
(l)
k ∗ I](y + x)

 , (11.15)

where

sj,y(I) = h′

∑
k,x

w
(j)
k,x[F

(l)
k ∗ I](y + x) + bj

 (11.16)

is a binary on/off detector of object j at position y on image I, because for h(r) = max(0, r), h′(r) = 0
if r ≤ 0, and h′(r) = 1 if r > 0. The gradient (11.15) admits an EM [46] interpretation which is typical
in unsupervised learning algorithms that involve hidden variables. Specifically, sj,y() detects the object of
type j that is modeled by F (l+1)

j at location y. This step can be considered a hard-decision E-step. With

the objects detected, the parameters of F (l+1)
j are then refined in a similar way as in (12.35), which can

be considered the M-step. That is, we learn F (l+1)
j only from image patches where objects of type j are

detected.
Figure 11.11 displays two experiments. In each experiment, the first image (224 × 224) is the training

image, and the rest 2 images are generated by the learned model. In the first scenery experiment, we learn
10 filters at the 4th convolutional layer, based on the pre-trained VGG filters at the 3rd layer. The size of
each Conv4 filter to be learned is 11 × 11 × 256. In the second sunflower experiment, we learn 20 filters
of size 7 × 7 × 256. Clearly these learned filters capture the local objects or patterns and re-shuffle them
seamlessly.

11.1.6 Deep convolutional energy-based model

Instead of relying on the pre-trained filters from an existing ConvNet, we can also learn the filters {F (l)
k , k =

1, ...,K} themselves. The resulting model is a deep convolutional energy-based model [41, 182, 261],

p(I; θ) =
1

Z(θ)
exp[f(I; θ)]q(I), (11.17)

where f(I; θ) is defined by a ConvNet. In model model (11.14) with (11.13), we have

f(I; θ) =

J∑
j=1

∑
x∈D

[F
(l+1)
j ∗ I](x). (11.18)

243

Figure 11.11: Learning a new layer of filters without requiring object bounding boxes or image alignment.
For each experiment, the first image (224 × 224) is the training image, and the next 2 images are generated
by the learned model.

Using more compact notation, we can define f(I; θ) recursively by

I(l) = h(wlI
(l−1) + bl), (11.19)

for l = 1, ..., L, where h() is applied element-wise. I(0) = I, and f(I; θ) = I(L). I(l) consists of all the
filtered images or feature maps at layer l, and the rows of wl consist of all the filters as well as all the
locations where the filters operate on I(l−1) to extract the features in I(l). We assume that at the final layer
L, I(L) is reduced to a number (i.e., a 1 × 1 feature map). w = (wl, bl, l = 1, ..., L). We can compare the
compact equation (11.19) with the more detailed equation (11.8).

For piecewise linear h(), such as h(r) = max(0, r), the function f(I; θ) is piecewise linear [175, 191].
Specifically, h(r) = max(0, r) = 1(r > 0)r, where 1(r > 0) is the indicator function that returns 1 if
r > 0 and 0 otherwise. Then

I(l) = sl(I; θ)(wlI
(l−1) + bl), (11.20)

where

sl(I; θ) = diag(1(wlI
(l−1) + bl > 0)), (11.21)

i.e., a diagonal matrix of binary indicators (the indicator function is applied element-wise) [191]. Let s =
(sl, l = 1, ..., L) consists of indicators at all the layers, then

f(I; θ) = Bs(I;θ)I + as(I;θ) (11.22)

is piecewise linear, where

Bs =
1∏
l=L

slwl, (11.23)

244

and as can be similarly calculated. s(I; θ) partitions the image space of I into exponentially many pieces
[191] according to the value of s(I; θ). The partition is recursive because sl(I; θ) depends on sl−1(I; θ). The
boundaries between the pieces are all linear. On each piece with s(I; θ) = s, where s on the right hand side
denotes a particular value of s(I; θ), f(I; θ) is a linear function f(I; θ) = BsI + as. The binary switches in
s(I; θ) reconfigure the linear transformation according to (11.23).

f(I; θ) generalizes three familiar structures in statistics:
(1) Generalized linear model (GLM). A GLM structure is a composition of a linear combination of the

input variables and a non-linear link function. A ConvNet can be viewed as a recursion of this structure,
where each component of I(l) is a GLM transformation of I(l−1), with h being the link function.

(2) Linear spline. A one-dimensional linear spline is of the form y = β0 +
∑d

k=1 βk max(0, x − ak),
where ak are the knots. The ConvNet f(I; θ) can be viewed as a multi-dimensional linear spline. The
number of linear pieces is exponential in the number of layers [191]. Such a structure can approximate any
continuous non-linear function by a large number of linear pieces.

(3) CART [20] and MARS [72]. In the classification and regression tree (CART) and the multivariate
adaptive regression splines (MARS), the input domain is recursively partitioned. The linear pieces men-
tioned above are also recursively partitioned according to the values of sl(I; θ) for l = 1, ..., L. Moreover,
MARS also makes use of the hinge function max(0, r).

For Gaussian reference q(I), the energy function is

U(I; θ) = −f(I; θ) +
1

2σ2
||I||2. (11.24)

We can continue to use Langevin dynamics (12.59) to sample from p(I; θ).
The parameter w can be learned by the stochastic gradient ascent algorithm [267]

w(t+1) = w(t) + γt

[
1

n

n∑
i=1

∂

∂w
f(Ii; θ)−

1

ñ

ñ∑
i=1

∂

∂w
f(Ĩi; θ)

]
, (11.25)

where again γt is the learning rate, and {Ĩi, i = 1, ..., ñ} are the synthetic images sampled from p(I;w(t)).
This is again an analysis by synthesis scheme. This step shifts the probability density function p(I; θ), or
more specifically, the high probability regions or the low energy regions, from the synthetic images {Ĩi} to
the observed images {Ii}.

In the sampling step, we need to compute ∂f(I; θ)/∂I. In the learning step, we need to compute
∂f(I; θ)/∂w. Both derivatives can be calculated by the chain rule back-propagation, and they share the
computations of ∂I(l)/∂I(l−1).

Our experiments show that the model is quite expressive. For example, we learn a 3-layer model. The
first layer has 100 15×15 filters with sub-sampling size of 3 pixels. The second layer has 64 5×5 filters with
sub-sampling size of 1. The third layer has 30 3 × 3 filters with sub-sampling size of 1. We learn a model
(11.17) for each texture category from a single training image. Figure 11.12 displays some results. For each
category, the first image is the training image, and the rest are 2 of the images generated by the learning
algorithm. We use ñ = 16 parallel chains for Langevin sampling. The number of Langevin iterations
between every two consecutive updates of parameters is 10. The training images are of the size 224× 224,
whose intensities are within [0, 255]. We fix σ2 = 1 in the reference distribution q.

While the sparse FRAME model is interpretable in terms of symbolic sketch of the images, the deep
FRAME model is not interpretable with its multiple layers of dense connections in linear filtering. Perhaps
the non-interpretability of the deep ConvNets is a fact we have to live with, very much like we find peace
with quantum mechanics with its unitary linear evolution of the wave function and non-linear probabilistic

245

Figure 11.12: Generating texture patterns. For each category, the first image (224 × 224) is the training
image, and the rest are 2 of the images generated by the learning algorithm.

collapsing of the wave function at measurement, as long as it is mathematically consistent and it gives correct
predictions. The dense connections may be doing some implicit form of Bayesian model averaging without
explicitly inferring latent variables whose uncertainties may be too large to be worthy of explicit inference,
especially at the lower layers. On the other hand, at the higher layers, sparse connections and symbolic
representations, as well as grammatical understanding [277] and logical reasoning, may naturally emerge,
as the uncertainties become smaller. It would be interesting to find out how such sparse and symbolic
representations arise from dense continuous vector representations.

11.1.7 Hopfield auto-encoder

Consider the sparse FRAME model (4.28). Let us assume that the reference distribution q(I) is white noise
with mean 0 and variance σ2 = 1. The energy function is

U(I) =
1

2
‖I‖2 −

m∑
j=1

wjh(〈I, Bkj ,xj 〉). (11.26)

246

This energy function can be multi-modal, and each local minimum Î satisfies U ′(Î) = 0. Thus,

Î =

m∑
j=1

wih
′(〈Î, Bkj ,xj 〉)Bkj ,xj . (11.27)

This reveals an auto-encoder [15, 243] hidden in the local modes:

Encoding : cj = wjh
′(〈Î, Bkj ,xj 〉), (11.28)

Decoding : Î =

n∑
i=1

cjBkj ,xj , (11.29)

where (11.28) encodes Î by (cj), and (11.29) reconstructs Î from (cj). Bkj ,xj serves as both bottom-up
filter in (11.28) and top-down basis function in (11.29). We call this auto-encoder the Hopfield auto-encoder
because Î is a local minimum of the energy function (11.26). Hopfield [107] proposes that the local energy
minima may be used for content-addressable memory.

The Hopfield auto-encoder also presents itself in the deep convolutional energy-based model (11.17)
[261]. The energy function of the model is ‖I‖2/2 − f(I; θ). The local minima satisfies the Hopfield
auto-encoder Î = f ′(Î; θ), or more specifically,

Encoding : s = s(Î; θ), (11.30)

Decoding : Î = Bs. (11.31)

The encoding process is a bottom-up computation of the indicators at different layers sl = sl(I; θ), for
l = 1, ..., L, where wl plays the role of filters, see equation (11.21). The decoding process is a top-down
computation for reconstruction, where sl plays the role of coefficients, and wl plays the role of basis func-
tions. See equation (11.23). The encoding process detects the patterns corresponding to the filters, and then
decoding process reconstructs the image using the detected filters as the basis functions.

Now let us think about a simple example. Suppose we fit an energy-based neural network model which
has 2 fully connected hidden layers and we use Gaussian as reference distribution, i.e. the energy function
can be written as the following form:

U(I) =
1

2
‖I‖2 − (W3 h(W2 h(W1I + b1) + b2) + b3). (11.32)

In this equation, we treat our n-dimensional input I as a n × 1 matrix. Suppose we have n1 neurons in the
first layer and n2 neurons in the second layer, then W1 is a n1 × n matrix, W2 is a n2 × n1 matrix and W3

is a 1 × n2 matrix (the final output shape 1 corresponds to the single channel energy output). b1, b2, b3 has
shape n1 × 1, n2 × 1, 1 × 1. We use h(.) to denote the activation function, which can be Sigmoid, ReLU,
Softplus, etc. Then at each local minimum, we have ∂U

∂I = 0, which gives us the following equation:

IT = W3S2W2S1W1

S1 = diag(
∂h(W1I + b1)

∂(W1I + b1)
)

S2 = diag(
∂h(W2h(W1I + b1)

∂(W2h(W1I + b1)
+ b2))

(11.33)

247

Si is the our encoding in this case, which is a diagonal matrix whose diagonal elements are the gradients of
the activation function we use. Then we can define our bases and rewrite 11.33 as:

B1 = S1W1 IT = W3S2W2B1 (11.34)

B2 = S2W2S1W1 IT = W3B2 (11.35)

In other words, we can write I as the reconstruction of the bases function at each layer. Note that the bases
Bi we use here are not fixed, but is a function which depends on the input itself, i.e. the model first encode
the data into Sis, then these Si’s will generate Bis and at local minimum points, these Bis reconstruct the
input data.

We show the result from a toy example in Figure 11.13. Here we assume the true data lies on a circle.
Our neural network has 10 neurons at the first layer and 8 neurons at the second layer. As for the activation
function, we use Softplus. Shown in 11.36, Softplus can be seen as a smooth version at ReLU, which is
differentiable everywhere (ReLU is not differentiable at 0). We choose it because our analysis relies on the
gradients of the energy function (11.33 does not apply to non-differentiable points). In Figure 11.13 (c) and
(d), we visualize the basis got from different layers. Remember as we discussed above, currently a "basis"
we talked here is actually a function that maps a two-dimensional input to a two-dimensional output. There-
fore, given a input data point, for each basis function, we can calculate a two-dimensional output point. In
Figure 11.13 (c) and (d), we calculate all the basis function on all the training data points. We then plot all
these output points on a two-dimensional space and use the same color to represent points from the same
basis function. One can understand this as a visualization of given that the original data points locate on a
circle, how the output points from a certain basis lies in the space. From Figure 11.13 (c), we can see that the
bases of the first layer is straight line segments. This is because the S1 is a diagonal matrix, thus it can only
re-scale the fix weight W1 instead of mix them together. But the bases of the second layer can actually has
different shapes. Shown in (d), we can see in this case, the model learns some basis with circle-like shape
This is closely related to the space partition (We can see that the model finds some circle-like partition lines
in (b)). In (e), we can see that the reconstructed values agree with the input data at the local minimum points.

h(a) = ln(1 + exp(a))

h
′
(a) =

1

1 + exp(−a)

(11.36)

One thing we want to note here is that although we find some interesting shapes for high layer bases in
this toy example. In real applications. It is very unlikely that we can get bases which carries any explicitly
interpretable meanings. Actually 11.13 (d) shows that although we our data only lies on a circle that has a
radius of 0.6, the bases can take value in much wider ranges (-20 to 20). That is because we only require the
weighted sum of these bases to reconstruct the original data. And they only reconstruct the data which lies
at the local minimum of the fitted energy function. During the training process, our only goal is to match
the statistics at the final layer of our neural network instead of reconstructing each data points. Also, under
different initialization, we may get totally different space partition and thus different bases function. Shown
in Figure 11.14, under another initialization, we actually some triangle-like bases.

The relationship between auto-encoders and energy-based models [142] has been investigated by [242]
and [227] for the restricted Boltzmann machine and its extensions [103]. A regularized auto-encoder is a
special form of score matching estimator [113]. The Hopfield auto-encoder was first elucidated by [261].

248

Figure 11.13: Results for Hopfield auto-encoder. (a) The fitted energy function. Red points is the fitted
local minimum. (b) Space partition. (c)(d) Plotting the bases at each layer. We calculate the basis values
at each training data. Each point in the figure is value of a certain basis calculated from one training data.
Different color indicates different basis. (e) Plotting the reconstruction at the final layer. The red points are
reconstructed from local minimum points; the green points are reconstructed from non-minimum points; the
blue points are true values. We can see that at local minimum, reconstruction and true values agree with
each other.

Figure 11.14: Results for Hopfield auto-encoder from another initialization. (a) The fitted energy function.
Red points is the fitted local minimum. (b) Space partition. (c)(d) Plotting the bases at each layer. We
calculate the basis values at each training data. Each point in the figure is value of a certain basis calculated
from one training data. Different color indicates different basis. (e) Plotting the reconstruction at the final
layer. The red points are reconstructed from local minimum points; the green points are reconstructed from
non-minimum points; the blue points are true values. We can see that at local minimum, reconstruction and
true values agree with each other.

249

11.1.8 Multigrid sampling and modeling

In the high-dimensional space, e.g. image space, the model can be highly multi-modal. The MCMC in
general and the Langevin dynamics in particular may have difficulty traversing different modes and it may be
very time-consuming to converge. A simple and popular modification of the maximum likelihood learning
is the contrastive divergence (CD) learning [101], where we obtain the synthesized example by initializing
a finite-step MCMC from the observed example. The CD learning is related to score matching estimator
[113, 114] and auto-encoder [3, 227, 242]. Such a method has the ability to handle large training datasets
via mini-batch training. However, bias may be introduced in the learned model parameters in that the
synthesized images can be far from the fair examples of the current model. A further modification of CD
is persistent CD [233], where at the initial learning epoch the MCMC is still initialized from the observed
examples, while in each subsequent learning epoch, the finite-step MCMC is initialized from the synthesized
example of the previous epoch. The resulting synthesized examples can be less biased by the observed
examples. However, the persistent chains may still have difficulty traversing different modes of the learned
model.

Figure 11.15: Synthesized images at multi-grids [75]. From left to right: 4 × 4 grid, 16 × 16 grid and
64× 64 grid. Synthesized image at each grid is obtained by 30 step Langevin sampling initialized from the
synthesized image at the previous coarser grid, beginning with the 1× 1 grid.

Forest road Volcano Hotel room Building facade

Figure 11.16: Synthesized images from models learned by multi-grid method [75] from 4 categories of MIT
places205 datasets.

In [75], we developed a multi-grid sampling and learning method to address the above challenges under
the constraint of finite budget MCMC. Specifically, we repeatedly down-scale each training image to get its

250

multi-grid versions. Our method learns a separate descriptive model at each grid. Within each iteration of
our learning algorithm, for each observed training image, we generate the corresponding synthesized images
at multiple grids. Specifically, we initialize the finite-step MCMC sampling from the minimal 1× 1 version
of the training image, and the synthesized image at each grid serves to initialize the finite-step MCMC
that samples from the model of the subsequent finer grid. See Figure 11.15 for an illustration, where we
sample images sequentially at 3 grids, with 30 steps of Langevin dynamics at each grid. After obtaining
the synthesized images at the multiple grids, the models at the multiple grids are updated separately and
simultaneously based on the differences between the synthesized images and the observed training images
at different grids.

Unlike original CD or persistent CD, the learned models are capable of generating new synthesized
images from scratch with a fixed budget MCMC, because we only need to initialize the MCMC by sampling
from the one-dimensional histogram of the 1× 1 versions of the training images.

In our experiments, the training images are resized to 64 × 64. Since the models of the three grids act
on images of different scales, we design a specific ConvNet structure per grid: grid1 has a 3-layer network
with 5× 5 stride 2 filters at the first layer and 3× 3 stride 1 filters at the next two layers; grid2 has a 4-layer
network with 5 × 5 stride 2 filters at the first layer and 3 × 3 stride 1 filters at the next three layers; grid3
has a 3-layer network with 5 × 5 stride 2 filters at the first layer, 3 × 3 stride 2 filters at the second layer,
and 3× 3 stride 1 filters at the third layer. Numbers of channels are 96− 128− 256 at grid1 and grid3, and
96− 128− 256− 512 at grid2. A fully-connected layer with 1 channel output is added on top of every grid
to get the value of the function fθ(I). At each iteration, we run l = 30 steps of Langevin dynamics for each
grid with step size s = 0.3. All networks are trained simultaneously with mini-batches of size 100 and an
initial learning rate of 0.3. Learning rate is decayed logarithmically every 10 iterations.

We learn multi-grid models from several datasets including CelebA [155], MIT places205 [272] and
CIFAR-10 [138]. In the CelebA dataset, we randomly sample 10,000 images for training. Figure 11.15
shows the synthesized examples. Figure 11.16 shows synthesized images from models learned from 4
categories of MIT places205 dataset by multi-grid method. We learn from each category separately. The
number of training images is 15, 100 for each category.

Traditionally, the mixing time of Markov chain is defined via d(t) = maxx ‖P (t)(x, ·) − π‖TV, where
P (t) is the t-step transition, π is the stationary distribution, and ‖ · ‖TV is the total variation distance. This is
the worst case scenario by choosing the least favorable point mass at I. In our method, however, the initial
distribution at each grid can be much more favorable, e.g., it may already agree approximately with π on
the marginal distribution of the coarser grid, so that after t steps, the distribution of the sampled image can
be close to π, even if this is not the case for the worst case starting point. Such non-persistent finite budget
MCMC is computationally more manageable than persistent chains in learning.

To train multi-grid models on 10,000 training images for 400 iterations with a singe Titan X GPU, it
takes about 7.45 hours. After training, it takes less than 1 second to generate a batch of 100 images. We also
train the multi-grid models on LSUN bedroom dataset [268], which consists of roughly 3 million images.
Figure 11.17 shows the learning results after 8 epochs.

The learned descriptive model is a bottom-up ConvNet that consists of multiple layers of features. These
features can be used for subsequent tasks such as classification. The learned models can also be used as a
prior distribution for inpainting, as illustrated by Figure 11.18. See [75] for experiment details and numerical
evaluations.

251

Figure 11.17: Learning the multi-grid models from the LSUN bedroom dataset [75]. Left: random samples
of training examples. Right: synthesized examples generated by the learned models.

Figure 11.18: Inpainting examples on CelebA dataset [75]. In each block from left to right: the original
image; masked input; inpainted image by multi-grid method.

11.1.9 Adversarial interpretation

The deep convolutional energy-based model (11.17) can be written as

p(I; θ) =
1

Z(θ)
exp[−U(I; θ)], (11.37)

where the energy function U(I; θ) = −f(I; θ) + 1
2σ2 ||I||2. The update of w is based on L′(θ) which can be

approximated by

1

ñ

ñ∑
i=1

∂

∂w
U(Ĩi; θ)−

1

n

n∑
i=1

∂

∂w
U(Ii; θ), (11.38)

where {Ĩi, i = 1, ..., ñ} are the synthetic images that are generated by the Langevin dynamics. At the zero
temperature limit, the Langevin dynamics becomes gradient descent:

Ĩτ+1 = Ĩτ − δ
∂

∂Ĩ
U(Ĩτ ; θ). (11.39)

252

Consider the value function

V (Ĩi, i = 1, ..., ñ; θ) =
1

ñ

ñ∑
i=1

U(Ĩi; θ)−
1

n

n∑
i=1

U(Ii; θ). (11.40)

The updating of w is to increase V by shifting the low energy regions from the synthetic images {Ĩi} to the
observed images {Ii}, whereas the updating of {Ĩi, i = 1, ..., ñ} is to decrease V by moving the synthetic
images towards the low energy regions. This is an adversarial interpretation of the learning and sampling
algorithm. It can also be considered a generalization of the herding method [248] from exponential family
models to general energy-based models.

If we recruit a generator model g(I; w̃) as a sampler, then the energy-based model and the generator
model play a minimax game with the value function

V (w̃; θ) = Ew̃[U(Ĩ; θ)]− Edata[U(I; θ)], (11.41)

where Ew̃ is the expectation with respect to the generator model with parameter w̃, and Edata[U(I; θ)] =
1
n

∑n
i=1 U(Ii; θ). This is related to [6].

11.1.10 Short-run MCMC

We investigate a learning scheme that is apparently wrong with no hope of learning a valid model. Within
each learning iteration, we run a non-convergent, non-mixing and non-persistent short-run MCMC, such as
10 to 100 steps of Langevin dynamics, toward the current EBM. Here, we always initialize the non-persistent
short-run MCMC from the same distribution, such as the uniform noise distribution, and we always run the
same number of MCMC steps. We then update the model parameters as usual, as if the synthesized examples
generated by the non-convergent and non-persistent noise-initialized short-run MCMC are the fair samples
generated from the current EBM. We show that, after the convergence of such a learning algorithm, the
resulting noise-initialized short-run MCMC can generate realistic images, see Figures 11.19 and 11.20.

The short-run MCMC is not a valid sampler of the EBM because it is short-run. As a result, the learned
EBM cannot be a valid model because it is learned based on a wrong sampler. Thus we learn a wrong
sampler of a wrong model. However, the short-run MCMC can indeed generate realistic images. What is
going on?

Figure 11.19: Synthesis by short-run MCMC: Generating synthesized examples by running 100 steps of
Langevin dynamics initialized from uniform noise for CelebA (64× 64).

In the following, we will understand the learned short-run MCMC. We provide arguments that it is a
valid model for the data in terms of matching the statistical properties of the data distribution. We also show
that the learned short-run MCMC can be used as a generative model, such as a generator model [83,133] or
the flow model [11,51,52,84,134], with the Langevin dynamics serving as a noise-injected residual network,
with the initial image serving as the latent variables, and with the initial uniform noise distribution serving as
the prior distribution of the latent variables. We show that unlike traditional EBM and MCMC, the learned

253

Figure 11.20: Synthesis by short-run MCMC: Generating synthesized examples by running 100 steps of
Langevin dynamics initialized from uniform noise for CelebA (128× 128).

short-run MCMC is capable of reconstructing the observed images and interpolating different images, just
like a generator or a flow model can do. See Figures 11.21 and 11.22. This is very unconventional for EBM
or MCMC, and this is due to the fact that the MCMC is non-convergent, non-mixing and non-persistent. In
fact, our argument applies to the situation where the short-MCMC does not need to have the EBM as the
stationary distribution.

This perspective constitutes a conceptual shift, where we shift attention from learning EBM with un-
realistic convergent MCMC to the non-convergent short-run MCMC. This is a break away from the long
tradition of both EBM and MCMC. We provide theoretical and empirical evidence that the learned short-
run MCMC is a valid generator or flow model. This conceptual shift frees us from the convergence issue of
MCMC, and makes the short-run MCMC a reliable and efficient technology.

Figure 11.21: Interpolation by short-run MCMC resembling a generator or flow model: The transi-
tion depicts the sequence Mθ(zρ) with interpolated noise zρ = ρz1 +

√
1− ρ2z2 where ρ ∈ [0, 1] on

CelebA (64× 64). Left: Mθ(z1). Right: Mθ(z2).

Figure 11.22: Reconstruction by short-run MCMC resembling a generator or flow model: The
transition depicts Mθ(zt) over time t from random initialization t = 0 to reconstruction t = 200 on
CelebA (64× 64). Left: Random initialization. Right: Observed examples.

More generally, we shift the focus from energy-based model to energy-based dynamics. This appears
to be consistent with the common practice of computational neuroscience [140], where researchers often
directly start from the dynamics, such as attractor dynamics [5,107,196] whose express goal is to be trapped

254

in a local mode. It is our hope that our work may help to understand the learning of such dynamics. We
leave it to future work.

For short-run MCMC, contrastive divergence (CD) [101] is the most prominent framework for theoret-
ical underpinning. The difference between CD and our study is that in our study, the short-run MCMC is
initialized from noise, while CD initializes from observed images. CD has been generalized to persistent
CD [234]. Compared to persistent MCMC, the non-persistent MCMC in our method is much more efficient
and convenient. [183] performs a thorough investigation of various persistent and non-persistent, as well as
convergent and non-convergent learning schemes. In particular, the emphasis is on learning proper energy
function with persistent and convergent Markov chains. In all of the CD-based frameworks, the goal is to
learn the EBM, whereas in our framework, we discard the learned EBM, and only keep the learned short-run
MCMC.

Let I be the signal, such as an image. The energy-based model (EBM) is a Gibbs distribution

pθ(I) =
1

Z(θ)
exp(fθ(I)), (11.42)

where we assume I is within a bounded range. fθ(I) is the negative energy and is parametrized by a bottom-
up convolutional neural network (ConvNet) with weights θ. Z(θ) =

∫
exp(fθ(I))dx is the normalizing

constant.
Suppose we observe training examples Ii, i = 1, ..., n ∼ Pdata, where Pdata is the data distribution. For

large n, the sample average over {Ii} approximates the expectation with respect with Pdata. For notational
convenience, we treat the sample average and the expectation as the same.

The log-likelihood is

L(θ) =
1

n

n∑
i=1

log pθ(Ii)
.
= EPdata

[log pθ(I)]. (11.43)

The derivative of the log-likelihood is

L′(θ) = EPdata
[f.θ(I)]− Epθ [f.θ(I)]

.
=

1

n

n∑
i=1

f.θ(Ii)−
1

n

n∑
i=1

f.θ(I
−
i), (11.44)

where I−i ∼ pθ(I) for i = 1, ..., n are the generated examples from the current model pθ(I).
The above equation leads to the “analysis by synthesis” learning algorithm. At iteration t, let θt be the

current model parameters. We generate I−i ∼ pθt(I) for i = 1, ..., n. Then we update θt+1 = θt + ηtL
′(θt),

where ηt is the learning rate.
Generating synthesized examples I−i ∼ pθ(I) requires MCMC, such as Langevin dynamics (or Hamil-

tonian Monte Carlo) [180], which iterates

Iτ+∆τ = Iτ +
∆τ

2
f ′θ(Iτ) +

√
∆τUτ , (11.45)

where τ indexes the time, ∆τ is the discretization of time, and Uτ ∼ N(0, I) is the Gaussian noise term.
f ′θ(I) = ∂fθ(I)/∂x can be obtained by back-propagation. If pθ is of low entropy or low temperature, the
gradient term dominates the diffusion noise term, and the Langevin dynamics behaves like gradient descent.

If fθ(I) is multi-modal, then different chains tend to get trapped in different local modes, and they do not
mix. We propose to give up the sampling of pθ. Instead, we run a fixed number, e.g., K, steps of MCMC,

255

toward pθ, starting from a fixed initial distribution, p0, such as the uniform noise distribution. Let Mθ be the
K-step MCMC transition kernel. Define

qθ(I) = (Mθp0)(z) =

∫
p0(z)Mθ(I|z)dz, (11.46)

which is the marginal distribution of the sample I after running K-step MCMC from p0.
In this paper, instead of learning pθ, we treat qθ to be the target of learning. After learning, we keep qθ,

but we discard pθ. That is, the sole purpose of pθ is to guide a K-step MCMC from p0.
The learning algorithm is as follows. Initialize θ0. At learning iteration t, let θt be the model parameters.

We generate I−i ∼ qθt(I) for i = 1, ...,m. Then we update θt+1 = θt + ηt∆(θt), where

∆(θ) = EPdata
[f.θ(I)]− Eqθ [f.θ(I)] ≈

m∑
i=1

f.θ(Ii)−
m∑
i=1

f.θ(I
−
i). (11.47)

We assume that the algorithm converges so that ∆(θt) → 0. At convergence, the resulting θ solves the
estimating equation ∆(θ) = 0.

To further improve training, we smooth Pdata by convolution with a Gaussian white noise distribution,
i.e., injecting additive noises εi ∼ N(0, σ2I) to observed examples Ii ← Ii + εi [204, 224]. This makes it
easy for ∆(θt) to converge to 0, especially if the number of MCMC steps, K, is small, so that the estimating
equation ∆(θ) = 0 may not have solution without smoothing Pdata.

We may consider qθ(I) to be a generative model,

z ∼ p0(z); I = Mθ(z, u), (11.48)

where u denotes all the randomness in the short-run MCMC. For the K-step Langevin dynamics, Mθ can
be considered a K-layer noise-injected residual network. z can be considered latent variables, and p0 the
prior distribution of z. Due to the non-convergence and non-mixing, I can be highly dependent on z, and z
can be inferred from I. This is different from the convergent MCMC, where I is independent of z. When
the learning algorithm converges, the learned EBM tends to have low entropy and the Langevin dynamics
behaves like gradient descent, where the noise terms are disabled, i.e., u = 0. In that case, we simply write
I = Mθ(z).

We can perform interpolation as follows. Generate z1 and z2 from p0(z). Let zρ = ρz1 +
√

1− ρ2z2.
This interpolation keeps the marginal variance of zρ fixed. Let Iρ = Mθ(zρ). Then Iρ is the interpolation of
I1 = Mθ(z1) and I2 = Mθ(z2). Figure 11.21 displays Iρ for a sequence of ρ ∈ [0, 1].

For an observed image I, we can reconstruct I by running gradient descent on the least squares loss
function L(z) = ‖I−Mθ(z)‖2, initializing from z0 ∼ p0(z), and iterates zt+1 = zt−ηtL′(zt). Figure 11.22
displays the sequence of It = Mθ(zt).

In general, z ∼ p0(z); I = Mθ(z, u) defines an energy-based dynamics. K does not need to be fixed.
It can be a stopping time that depends on the past history of the dynamics. The dynamics can be made
deterministic by setting u = 0. This includes the attractor dynamics popular in computational neuro-
science [5, 107, 196].

An early version of EBM is the FRAME (Filters, Random field, And Maximum Entropy) model [256,
276,280], which is an exponential family model, where the features are the responses from a bank of filters.
The deep FRAME model [157] replaces the linear filters by the pre-trained ConvNet filters. This amounts to
only learning the top layer weight parameters of the ConvNet. Specifically, fθ(I) = 〈θ, h(I)〉, where h(I)
are the top-layer filter responses of a pre-trained ConvNet, and θ consists of the top-layer weight parameters.
For such an fθ(I), f.θ(I) = h(I). Then, the maximum likelihood estimator of pθ is actually a moment

256

matching estimator, i.e., Epθ̂MLE
[h(I)] = EPdata

[h(I)]. If we use the short-run MCMC learning algorithm,
it will converge (assume convergence is attainable) to a moment matching estimator, i.e., Eqθ̂MME

[h(I)] =

EPdata
[h(I)]. Thus, the learned model qθ̂MME

(I) is a valid estimator in that it matches to the data distribution
in terms of sufficient statistics defined by the EBM.

Figure 11.23: The blue curve illustrates the model distributions corresponding to different values of param-
eter θ. The black curve illustrates all the distributions that match Pdata (black dot) in terms of E [h(I)]. The
MLE pθ̂MLE

(green dot) is the intersection between Θ (blue curve) and Ω (black curve). The MCMC (red
dotted line) starts from p0 (hollow blue dot) and runs toward pθ̂MME

(hollow red dot), but the MCMC stops
after K-step, reaching qθ̂MME

(red dot), which is the learned short-run MCMC.

Consider two families of distributions: Ω = {p : Ep[h(I)] = EPdata
[h(I)]}, and Θ = {pθ(I) =

exp(〈θ, h(I)〉)/Z(θ),∀θ}. They are illustrated by two curves in Figure 11.23. Ω contains all the distri-
butions that match the data distribution in terms of E [h(I)]. Both pθ̂MLE

and qθ̂MME
belong to Ω, and of

course Pdata also belongs to Ω. Θ contains all the EBMs with different values of the parameter θ. The
uniform distribution p0 corresponds to θ = 0, thus p0 belongs to Θ.

The EBM under θ̂MME, i.e., pθ̂MME
does not belong to Ω, and it may be quite far from pθ̂MLE

. In general,
Epθ̂MME

[h(I)] 6= EPdata
[h(I)], that is, the corresponding EBM does not match the data distribution as far as

h(I) is concerned. It can be much further from the uniform p0 than pθ̂MLE
is from p0, and thus pθ̂MME

may
have a much lower entropy than pθ̂MLE

.
Figure 11.23 illustrates the above idea. The red dotted line illustrates MCMC. Starting from p0, K-step

MCMC leads to qθ̂MME
(I). If we continue to run MCMC for infinite steps, we will get to pθ̂MME

. Thus the
role of pθ̂MME

is to serve as an unreachable target to guide the K-step MCMC which stops at the mid-way
qθ̂MME

. One can say that the short-run MCMC is a wrong sampler of a wrong model, but it itself is a valid
model because it belongs to Ω.

The MLE pθ̂MLE
is the projection of Pdata onto Θ. Thus it belongs to Θ. It also belongs to Ω as can be

seen from the maximum likelihood estimating equation. Thus it is the intersection of Ω and Θ. Among all
the distributions in Ω, pθ̂MLE

is the closest to p0. Thus it has the maximum entropy among all the distributions
in Ω.

The above duality between maximum likelihood and maximum entropy follows from the following
fact. Let p̂ ∈ Θ ∩ Ω be the intersection between Θ and Ω. Ω and Θ are orthogonal in terms of the
Kullback-Leibler divergence. For any pθ ∈ Θ and for any p ∈ Ω, we have the Pythagorean property [?]:
KL(p|pθ) = KL(p|p̂) + KL(p̂|pθ). Thus (1) KL(Pdata|pθ) ≥ KL(Pdata|p̂), i.e., p̂ is MLE within Θ. (2)
KL(p|p0) ≥ KL(p̂|p0), i.e., p̂ has maximum entropy within Ω.

We can understand the learned qθ̂MME
from two Pythagorean results.

(1) Pythagorean for the right triangle formed by q0, qθ̂MME
, and pθ̂MLE

,

KL(qθ̂MME
|pθ̂MLE

) = KL(qθ̂MME
|p0)−KL(pθ̂MLE

|p0) = H(pθ̂MLE
)−H(qθ̂MME

), (11.49)

257

Figure 11.24: Generated samples for K = 100 MCMC steps. From left to right: (1) CIFAR-10 (32 × 32),
(2) CelebA (64× 64), (3) LSUN Bedroom (64× 64).

where H(p) = −Ep[log p(I)] is the entropy of p. Thus we want the entropy of qθ̂MME
to be high in

order for it to be a good approximation to pθ̂MLE
. Thus for small K, it is important to let p0 be the uniform

distribution, which has the maximum entropy.
(2) Pythagorean for the right triangle formed by pθ̂MME

, qθ̂MME
, and pθ̂MLE

,

KL(qθ̂MME
|pθ̂MME

) = KL(qθ̂MME
|pθ̂MLE

) + KL(pθ̂MLE
|pθ̂MME

). (11.50)

For fixed θ, as K increases, KL(qθ|pθ) decreases monotonically [38]. The smaller KL(qθ̂MME
|pθ̂MME

) is,
the smaller KL(qθ̂MME

|pθ̂MLE
) and KL(pθ̂MLE

|pθ̂MME
) are. Thus, it is desirable to use large K as long as we

can afford the computational cost, to make both qθ̂MME
and pθ̂MME

close to pθ̂MLE
.

11.2 Generator Network

This section studies the fundamental problem of learning and inference in the generator network [83]. The
generator network is based on a top-down ConvNet. We recognize that the generator network is a non-
linear generalization of the factor analysis model and develop the alternating back-propagation algorithm
as the non-linear generalization of the alternating regression scheme of the Rubin-Thayer EM algorithm for
fitting the factor analysis model. The alternating back-propagation algorithm iterates the inferential back-
propagation for inferring the latent factors and the learning back-propagation for updating the parameters.
Both back-propagation steps share most of their computing steps in the chain rule calculations.

The learning algorithm is perhaps the most canonical algorithm for training the generator network. It is
based on maximum likelihood, which is theoretically the most accurate estimator. The maximum likelihood
learning seeks to explain and charge the whole dataset uniformly, so that there is little concern of under-
fitting or biased fitting.

As an unsupervised learning algorithm, the alternating back-propagation algorithm is a natural gener-
alization of the original back-propagation algorithm for supervised learning. It adds an inferential back-
propagation step to the learning back-propagation step, with minimal overhead in coding and affordable
overhead in computing. The inferential back-propagation seeks to perform accurate explaining-away infer-
ence of the latent factors.

258

11.2.1 Factor analysis

Let I be a D-dimensional observed data vector, such as an image. Let z be the d-dimensional vector of
continuous latent factors, z = (zk, k = 1, ..., d). The traditional factor analysis model is I = Wz + ε,
where W is D× d matrix, and ε is a D-dimensional error vector or the observational noise. We assume that
z ∼ N(0, Id), where Id stands for the d-dimensional identity matrix. We also assume that ε ∼ N(0, σ2ID),
i.e., the observational errors are Gaussian white noises. There are three perspectives to view W .

(1) Basis vectors. Write W = (W1, ...,Wd), where each Wk is a D-dimensional column vector. Then
I =

∑d
k=1 zkWk + ε, i.e., Wk are the basis vectors and zk are the coefficients.

(2) Loading matrix. WriteW = (w1, ..., wD)>, wherew>j is the j-th row ofW . Then Ij = 〈wj , X〉+εj ,
where Ij and εj are the j-th components of I and ε respectively. Each Ij is a loading of the d factors where
wj is a vector of loading weights, indicating which factors are important for determining yj . W is called the
loading matrix.

(3) Matrix factorization. Suppose we observe I = (I1, ..., In), whose factors are Z = (z1, ..., zn), then
I ≈WZ.

The factor analysis model can be learned by the Rubin-Thayer EM algorithm, which involves alternating
regressions of z on I in the E-step and of I on z in the M-step [154, 209].

The factor analysis model is the prototype of many subsequent models that generalize the prior model
of z.

(1) Independent component analysis [115], d = D, ε = 0, and zk are assumed to follow independent
heavy tailed distributions.

(2) Sparse coding [188], d > D, and z is assumed to be a redundant but sparse vector, i.e., only a small
number of zk are non-zero or significantly different from zero.

(3) Non-negative matrix factorization [146], it is assumed that zk ≥ 0.

11.2.2 Non-linear factor analysis

The generator network is a non-linear generalization of factor analysis. Factor analysis is a prototype model
in unsupervised learning of distributed representations. There are two directions one can pursue in order to
generalize the factor analysis model. One direction is to generalize the prior model or the prior assumption
about the latent factors. This led to methods such as independent component analysis [115], sparse cod-
ing [188], non-negative matrix factorization [146], matrix factorization and completion for recommender
systems [136], etc.

The other direction to generalize the factor analysis model is to generalize the mapping from the con-
tinuous latent factors to the observed signal. The generator network is an example in this direction. It
generalizes the linear mapping in factor analysis to a non-linear mapping that is defined by a convolutional
neural network (ConvNet or CNN) [55, 139, 141]. It has been shown that the generator network is capable
of generating realistic images [48, 197].

The generator network is a fundamental representation of knowledge, and it has the following properties:
(1) Analysis: The model disentangles the variations in the observed signals into independent variations

of latent factors.
(2) Synthesis: The model can synthesize new signals by sampling the factors from the known prior

distribution and transforming the factors into the signal.
(3) Embedding: The model embeds the high-dimensional non-Euclidean manifold formed by the ob-

served signals into the low-dimensional Euclidean space of the latent factors, so that linear interpolation in
the low-dimensional factor space results in non-linear interpolation in the data space.

259

In addition to generalizing the prior model of the latent factors z, we can also generalize the mapping
from z to I. Here, we consider the generator network model [83] that retains the assumptions that d < D,
z ∼ N(0, Id), and ε ∼ N(0, σ2ID) as in traditional factor analysis, but generalizes the linear mapping Wz
to a non-linear mapping g(z; θ), where f is a ConvNet, and W collects all the connection weights and bias
terms of the ConvNet. Then the model becomes

I = g(z; θ) + ε,

z ∼ N(0, Id), ε ∼ N(0, σ2ID), d < D. (11.51)

The reconstruction error is ‖I− g(z; θ)‖2.
Although g(z; θ) can be any non-linear mapping, the ConvNet parameterization of g(z; θ) makes it

particularly close to the original factor analysis. Specifically, we can write the top-down ConvNet as follows:

z(l−1) = gl(Wlz
(l) + bl), (11.52)

where gl is element-wise non-linearity at layer l, Wl is the matrix of connection weights, bl is the vector of
bias terms at layer l, and θ = (Wl, bl, l = 1, ..., L). z(0) = g(z; θ), and z(L) = I. The top-down ConvNet
(11.52) can be considered a recursion of the g(z; θ) original factor analysis model, where the factors at the
layer l − 1 are obtained by the linear superposition of the basis vectors or basis functions that are column
vectors of Wl, with the factors at the layer l serving as the coefficients of the linear superposition. In the
case of ConvNet, the basis functions are shift-invariant versions of one another, like wavelets.

11.2.3 Learning by alternating back-propagation

The factor analysis model can be learned by the Rubin-Thayer EM algorithm [46, 209], where both the
E-step and the M-step are based on multivariate linear regression. Inspired by this algorithm, we propose
an alternating back-propagation algorithm for learning the generator network that iterates the following
two-steps:

(1) Inferential back-propagation: For each training example, infer the continuous latent factors by
Langevin dynamics or gradient descent.

(2) Learning back-propagation: Update the parameters given the inferred latent factors by gradient
descent.

The Langevin dynamics [180] is a stochastic sampling counterpart of gradient descent. The gradient
computations in both steps are powered by back-propagation. Because of the ConvNet structure, the gradient
computation in step (1) is actually a by-product of the gradient computation in step (2).

Given the factors, the learning of the ConvNet is a supervised learning problem [55] that can be accom-
plished by the learning back-propagation. With factors unknown, the learning becomes an unsupervised
problem, which can be solved by adding the inferential back-propagation to the learning process. We shall
show that the alternating back-propagation algorithm can learn realistic generator models of natural images.

The alternating back-propagation algorithm follows the tradition of alternating operations in unsuper-
vised learning, such as alternating linear regression in the EM algorithm for factor analysis, alternating least
squares algorithm for matrix factorization [128, 136], and alternating gradient descent algorithm for sparse
coding [188]. All these unsupervised learning algorithms alternate an inference step and a learning step, as
is the case with alternating back-propagation.

The inferential back-propagation solves an inverse problem by an explaining-away process, where the
latent factors compete with each other to explain each training example.

Figure 11.25 depicts the reconstructions of face images by linear PCA and non-linear generator net.
For PCA, we learn the d eigenvectors from the training images, and then project the testing images on the

260

Figure 11.25: Comparison between generator as non-linear and PCA as linear factor analysis. Row 1:
original testing images. Row 2: reconstructions by PCA eigenvectors learned from training images. Row 3:
reconstructions by the generator learned from training images.

learned eigenvectors for reconstruction. The generator is learned by alternating back-propagation. We infer
the d dimensional latent factors z using inferential back-propagation, and then reconstruct the testing image
by g(z; θ) using the inferred z and the learned W .

Model (??) is a directed graphical model, where I can be readily generated by first sampling z from its
known prior distribution N(0, Idθ)) and then transforming z to I via g. The joint density of model (??) is
P (z, I; θ) = P (z)P (I|z; θ), and

logP (z, I; θ) = − 1

2σ2
‖I− g(z; θ)‖2 − 1

2
‖z‖2 + constant,

where the constant term is independent of z, I and W .
The marginal density is obtained by integrating out the latent factors z, i.e., P (I; θ) =

∫
P (z, I; θ)dz.

The inference of z given I is based on the posterior density P (z|I; θ) = P (z, I; θ)/P (I; θ) ∝ P (z, I; θ) as
a function of X .

For the training data {Ii, i = 1, ..., n}, the generator net can be trained by maximizing the log-likelihood

L(θ) =
1

n

n∑
i=1

logP (Ii; θ). (11.53)

For large sample,W is obtained by minimizing the Kullback-Leibler divergence KL(Pdata|P) from the data
distribution Pdata to the model distribution P .

The gradient of L(θ) is obtained according to the following identity

∂

∂W
logP (I; θ) =

1

P (I; θ)

∂

∂W

∫
P (I, X; θ)dX

=
1

P (I; θ)

∫ [
∂

∂W
logP (I, X; θ)

]
P (I, X; θ)dX

=

∫ [
∂

∂W
logP (I, X; θ)

]
P (I, X; θ)

P (I; θ)
dX

= EP (X|I;θ)

[
∂

∂W
logP (X, I; θ)

]
. (11.54)

The above identity underlies the EM algorithm, where EP (X|I;θ) is the expectation with respect to the
posterior distribution of the latent factors P (X|I; θ), and is computed in the E-step. The usefulness of
identity (11.54) lies in the fact that the derivative of the complete-data log-likelihood logP (X, I; θ) on the

261

right hand side can be obtained in closed form. In the EM algorithm, the M-step maximizes the expectation
of logP (X, I; θ) with respect to the current posterior distribution of the latent factors.

In general, the expectation in (11.54) is analytically intractable, and has to be approximated by MCMC
that samples from the posterior PG(X|I; θ), such as the Langevin inference dynamics, which iterates

Xτ+1 = Xτ +
δ2

2

∂

∂X
logP (Xτ , I; θ) + δUτ , (11.55)

where τ indexes the time step, δ is the step size, and for notational simplicity, we continue to use Uτ to
denote the noise term, but here Uτ ∼ N(0, Id).

We take the derivative of logP (X, I; θ) in (11.55) because this derivative is the same as the derivative
of the log-posterior logPG(X|I; θ), since P (X|I; θ) is proportional to P (X, I; θ) as a function of X .

To explain Langevin dynamics, its continuous time version for sampling π(I) ∝ exp[−E(I)] is xt+∆t =
xt −∆tE ′(It)/2 +

√
∆tUt. The dynamics has π as its stationary distribution, because it can be shown that

for any well-behaved testing function h, if xt ∼ π, then E [h(It+∆t)] − E [h(It)] → 0, as ∆t → 0, so that
xt+∆t ∼ π. Alternatively, given xt = x, suppose xt+∆t ∼ K(I, y), then [π(y)K(y, x)]/[π(I)K(I, y)]→ 1
as ∆t→ 0.

The Langevin inference solves a `2 penalized non-linear least squares problem so thatXi can reconstruct
Ii given the current W . The Langevin inference process performs explaining-away reasoning, where the
latent factors in X compete with each other to explain the current residual I− g(X; θ).

The stochastic gradient algorithm of [267] can be used for learning, where in each iteration, for each
Xi, only a single copy of Xi is sampled from p(Xi|Ii, θ) by running a finite number of steps of Langevin
dynamics starting from the current value of Xi, i.e., the warm start. With Xi sampled from P (Xi | Ii, θ) for
each observation Ii by the Langevin inference process, the Monte Carlo approximation to L′(θ) is

L′(θ) ≈ 1

n

n∑
i=1

∂

∂W
logP (Xi, Ii; θ)

=
1

n

n∑
i=1

1

σ2
(Ii − g(Xi; θ))

∂

∂W
g(Xi; θ). (11.56)

The updating of W solves a non-linear regression problem, so that the learned W enables better reconstruc-
tion of Ii by the inferredXi. Given the inferredXi, the learning ofW is a supervised learning problem [55].

Algorithm 7 [94] describes the training algorithm that iterates the following two steps: (1) Inference
step: update Xi by running I steps of gradient descent. (2) Learning step: update W by one step of gradient
descent. Step G1 needs to compute ∂

∂X g(X; θ). Step G2 needs to compute ∂
∂W g(X; θ). The computations

of both derivatives can be powered by back-propagation, and the computations of the two derivatives share
most of their steps in the chain rule computations.

Algorithm 7 is a stochastic approximation or stochastic gradient algorithm that converges to the maxi-
mum likelihood estimate [267]. If the Gaussian noise Uτ in the Langevin dynamics (11.55) is removed, then
the above algorithm becomes the alternating gradient descent algorithm. It is possible to update both W and
{Xi} simultaneously by joint gradient descent.

Both the inferential back-propagation and the learning back-propagation are guided by the residual
Ii − f(Xi; θ). The inferential back-propagation is based on ∂f(X; θ)/∂X , whereas the learning back-
propagation is based on ∂f(X; θ)/∂W . Both gradients can be efficiently computed by back-propagation.
The computations of the two gradients share most of their steps.

In Algorithm 7, the Langevin dynamics samples from a gradually changing posterior distribution p(Xi|Ii, θ)
because W keeps changing. The updating of both Xi and W collaborate to reduce the reconstruction error

262

Input:
(1) training examples {Ii, i = 1, ..., n}
(2) number of Langevin steps l
(3) number of learning iterations T

Output:
(1) estimated parameters W
(2) inferred latent factors {Xi, i = 1, ..., n}

1: Let t← 0, initialize W .
2: Initialize Xi, i = 1, ..., n.
3: repeat
4: Step G1 Langevin inference: For each i, run l steps of Langevin dynamics to update Xi, i.e.,

starting from the current Xi, each step follows equation (11.55).
5: Step G2 reconstruction: Update W (t+1) = W (t) + γtL

′(W (t)), with learning rate γt, where
L′(W (t)) is computed according to equation (11.56).

6: Let t← t+ 1
7: until t = T

Algorithm 7: Algorithm G

‖Ii − f(Xi; θ)||2. The parameter σ2 plays the role of annealing or tempering in Langevin sampling. If σ2

is very large, then the posterior is close to the prior N(0, Id). If σ2 is very small, then the posterior may be
multi-modal, but the evolving energy landscape of p(Xi|Ii, θ) may help alleviate the trapping of the local
modes. In practice, we tune the value of σ2 instead of estimating it. The Langevin dynamics can be extended
to Hamiltonian Monte Carlo [180] or more sophisticated versions [82].

Figure 11.26 illustrates the results of modeling textures where we learn a separate model from each
texture image. The factors X at the top layer form a

√
d ×
√
d image, with each pixel following N(0, 1)

independently. The
√
d×
√
d imageX is then transformed to I by the top-down ConvNet. In order to obtain

the synthesized image, we randomly sample a 7 × 7 image Z from N(0, I), and then expand the learned
network W to generate the 448 × 448 synthesized image f(X; θ).

11.2.4 EM, density mapping, and density shifting

Suppose the training data {Ii, i = 1, ..., n} come from a data distribution Pdata(I). To understand how the
alternating back-propagation algorithm or its EM idealization maps the prior distribution of the latent factors
p(X) to the data distribution Pdata(I) by the learned g(X; θ), we define

Pdata(X, I; θ) = Pdata(I)p(X|I, θ)
= Pdata(X; θ)Pdata(I|X, θ), (11.57)

where Pdata(X; θ) =
∫
p(X|I, θ)Pdata(I)dI is obtained by averaging the posteriors p(X|I; θ) over the

observed data I ∼ Pdata. That is, Pdata(X; θ) can be considered the data prior. The data prior Pdata(X; θ)
is close to the true prior p(X) in the sense that

KL(Pdata(X; θ)|p(X)) ≤ KL(Pdata(I)|p(I; θ)) (11.58)

= KL(Pdata(X, I; θ)|p(X, I; θ)).

The difference between the two sides of (11.58) is KL(Pdata(I|X, θ)|p(I|X, θ)). The right hand side of
(11.58) is minimized at the maximum likelihood estimate Ŵ , hence the data prior Pdata(X; Ŵ) at Ŵ

263

Figure 11.26: Modeling texture patterns. For each example, Left: the 224× 224 observed image. Right: the
448× 448 generated image.

should be especially close to the true prior p(X). In other words, at Ŵ , the posteriors p(X|I, Ŵ) of all the
data points I ∼ Pdata tend to pave the true prior p(X).

From Rubin’s multiple imputation point of view [208] of the EM algorithm, the E-step of EM infers
X

(m)
i ∼ p(Xi|Ii,Wt) for m = 1, ...,M , where M is the number of multiple imputations or multiple

guesses of Xi. The multiple guesses account for the uncertainty in inferring Xi from Ii. The M-step of
EM maximizes Q(θ) =

∑n
i=1

∑M
m=1 log p(Ii, X

(m)
i ; θ) to obtain Wt+1. For each data point Ii, Wt+1 seeks

to reconstruct Ii by g(X;W) from the inferred latent factors {X(m)
i ,m = 1, ...,M}. In other words, the

M-step seeks to map {X(m)
i } to Ii. Pooling over all i = 1, ..., n, {X(m)

i ,∀i,m} ∼ Pdata(X;Wt), hence the
M-step seeks to map Pdata(X;Wt) to the data distribution Pdata(I). Of course the mapping from {X(m)

i }
to Ii cannot be exact. In fact, g(X; θ) maps {X(m)

i } to a d-dimensional patch around the D-dimensional Ii.
The local patches for all {Ii,∀i} patch up the d-dimensional manifold form by the D-dimensional observed
examples and their interpolations. The EM algorithm is a process of density shifting, so that Pdata(Z; θ)
shifts towards p(X), thus g(X; θ) maps p(X) to Pdata(I).

Figure 11.27 illustrates the learnedD-dimensional manifold. We learn a model whereX = (x1, x2, . . . , xd)
has d = 100 components from 1000 face images randomly selected from the CelebA dataset [155]. The
left panel of Figure 11.27 displays the images generated by the learned model. The right panel displays the
interpolation results. The images at the four corners are generated by the Z vectors of four images randomly
selected from the training set. The images in the middle are obtained by first interpolating theX’s of the four
corner images using the sphere interpolation [52] and then generating the images by the learned ConvNet.

11.2.5 Extracting appearance and geometry, nonlinear generalization of the AAM model

Active Appearance Models (AAM) [35, 137] uses a linear model for jointly capturing the appearance and
geometric variation in an image. For the face images, the appearance information mainly includes colors,

264

Figure 11.27: Modeling object patterns. Left: each image generated by our method is obtained by first
sampling X ∼ N(0, I100) and then generating the image by f(X; θ) with the learned W . Right: interpola-
tion. The images at the four corners are reconstructed from the inferred X vectors of four images randomly
selected from the training set. Each image in the middle is obtained by first interpolating the X vectors of
the four corner images, and then generating the image by f(X; θ).

illuminations and identities, while the geometric information mainly includes the shapes and viewing angles.
Given a set of landmark points, the AAM model can learn the eigen vectors from these landmarks to extract
the geometric information orthogonally. With the known landmark points, the faces can also be aligned into
a canonical shape and view, by warping the faces with mean landmarks. Under this canonical geometric
state, the appearance information can be extracted orthogonally by the principal component analysis.

Can we extract the appearance and geometric knowledge from the images without any landmarks or
any supervised information? Moreover, can we disentangle the appearance and geometric information in a
purely unsupervised method? The deformable generator model can solve this problem.

The deformable generator model [265] disentangle the appearance and geometric information from im-
ages into two independent latent vectors. The model contains two generator networks: one appearance
generator and one geometric generator. The appearance generator produces the appearance information,
including color, illumination, identity or category, of an image. The geometric generator produces displace-
ment of the coordinates of each pixel and performs geometric warping, such as stretching and rotation, on
the appearance generator to obtain the final synthesized image, as shown in Figure 11.28. The geometric
operation only modifies the positions of pixels in an image without changing their colors and illumination.
Therefore, the color and illumination information and the geometric information are naturally disentangled
by the geometric generator and the appearance generator in the model.

The model can be expressed as

X = G(Za, Zg; θ) + ε

= Fw(ga(Z
a; θa), gg(Z

g; θg)) + ε (11.59)

where Za ∼ N(0, Ida), Zg ∼ N(0, Idg), and ε ∼ N(0, σ2ID) (D = Dx ×Dy × 3) are independent. Fw is
the warping function, which uses the deformation field generated by the geometric generator gg(Zg; θg) to
warp the image generated by the appearance generator ga(Za; θa) to synthesize the final output image X .

This deformable generator model can be learned by extending the alternating back-propagation al-
gorithm for two latent vectors. Specifically, the proposed model can be trained by maximizing the log-

265

Figure 11.28: An illustration of the proposed model. The model contains two generator networks: one ap-
pearance generator and one geometric generator. The two generators are connected with a warping function
to produce the final image. The warping function includes a geometric transformation operation for image
coordinates and a differentiable interpolation operation. The refining operation is optional for improving the
warping function.

likelihood on the training dataset {Xi, i = 1, . . . , N},

L(θ) =
1

N

N∑
i=1

log p(Xi; θ)

=
1

N

N∑
i=1

log

∫
p(Xi, Z

a
i , Z

g
i ; θ)dZai dZ

g
i , (11.60)

where we integrate out the uncertainties of Zai and Zgi in the complete-data log-likelihood to get the
observed-data log-likelihood.

We can evaluate the gradient of L(θ) by the following well-known result, which is related to the EM
algorithm:

∂

∂θ
log p(X; θ)

=
1

p(X; θ)

∂

∂θ

∫
p(X,Za, Zg)dZadZg

= Ep(Za,Zg |X;θ)

[
∂

∂θ
log p(X,Za, Zg; θ)

]
(11.61)

Since the expectation in Eq.(11.61) is usually analytically intractable, we employ Langevin dynamics to
draw samples from the posterior distribution p(Za, Zg|X; θ) and compute the Monte Carlo average to esti-
mate the expectation term. For each observation X , the latent vectors Za and Zg can be sampled from

266

Figure 11.29: Extracting appearance and geometric basis functions. Left: Each dimension of the appearance
latent vector encodes appearance information such as color, illumination and gender. In the fist line, from
left to right, the color of background varies from black to white, and the gender changes from a woman to
a man. In the second line, the moustache of the man becomes thicker when the corresponding dimension
of Za approahces zero, and the hair of the woman becomes denser when the corresponding dimension of
Za increases. In the third line, from left to right, the skin color changes from dark to white. In the fourth
line, from left to right, the illumination lighting changes from the left-side of the face to the right-side of
the face. Right: Each dimension of the geometric latent vector encodes fundamental geometric information
such as shape and viewing angle. In the fist line, the shape of the face changes from fat to thin from left
to the right. In the second line, the pose of the face varies from left to right. In the third line, from left to
right, the vertical tilt of the face varies from downward to upward. In the fourth line, the face width changes
from stretched to cramped. The deformable generator model is trained on the 10,000 face images from the
CelebA data set, which are cropped to 64 × 64 pixels, and the faces in the training data have a wide and
diverse variety of colors, illuminations, identities, viewing angles, shapes, and expressions.

p(Za, Zg|X; θ) alternately by Langevin dynamics: we fix Zg and sample Za from p(Za|X;Zg, θ) ∝
p(X,Za;Zg, θ), and then fix Za and sample Zg from p(Zg|X;Za, θ) ∝ p(X,Zg;Za, θ). At each sam-
pling step, the latent vectors are updated as follows:

Zaτ+1 = Zaτ +
δ2

2

∂

∂Za
log p(X,Zaτ ;Zgτ , θ) + δEaτ

Zgτ+1 = Zgτ +
δ2

2

∂

∂Zg
log p(X,Zgτ ;Zaτ , θ) + δEgτ (11.62)

where τ is the number of steps in the Langevin sampling, Eaτ , Egτ are independent standard Gaussian noise
to prevent the sampling from being trapped in local modes, and δ is the step size. The complete-data log-
likelihood can be evaluated by

log p(X,Za;Zg, θ) = log [p(Za)p(X|Za, Zg, θ)]
= − 1

2σ2
‖X − F (Za, Zg; θ)‖2 − 1

2
‖Za‖2 + C1

log p(X,Zg;Za, θ) = log [p(Zg)p(X|Za, Zg, θ)]
= − 1

2σ2
‖X − F (Za, Zg; θ)‖2 − 1

2
‖Zg‖2 + C2 (11.63)

where C1 and C2 are normalizing constants. It can be shown that, given sufficient sampling steps, the
sampled Za and Zg follow their joint posterior distribution.

267

After training the model, two sets of basis functions related with the appearance and geometric latent
vectors can be learned. The appearance and the geometric latent factors can be interpreted as the projection
or reconstruction coefficients along the direction of the corresponding appearance and geometric basis func-
tions. Representative basis functions from these two sets are shown in Figure 11.29. The appearance basis
function are obtained by setting the geometric latent vector to be zero, and only keeping one dimension of
the appearance latent vector to be non-zeros. Then, feeding these group of appearance and geometric latent
vectors to the top-down deformable generator to produce the corresponding basis functions. To study the
appearance latent vector, each time vary one dimension of the appearance variable Za from [−γ, γ] with a
uniform step 2γ

10 , while holding the other dimensions of Za at zero. And vice versa for the appearance basis
function and latent vector.

The abstracted geometric knowledge can be conveniently transferred to facilitate downstream AI tasks.
For the unseen images, Figure 11.30, we can first infer their appearance and geometric latent vectors, then the
geometric knowledge can be conveniently transferred by recombining the inferred geometric latent vector
from the target image with the inferred appearance latent vector from source image.

Figure 11.30: Transferring and recombining geometric and appearance vectors. The first row shows seven faces from
the CelebA data set. The second row shows the faces generated by transferring and recombining the second through
seventh faces’ geometric vectors z1 with the first face’s appearance vector z2 in the first row. The third row shows the
faces generated by transferring and recombining the second through seventh faces’ appearance vectors z2 with the first
face’s geometric vector z1 in the first row. The deformable generator model is trained on the 10,000 face images from
the CelebA data set, which are cropped to 64 × 64 pixels, and the faces in the training data have a wide and diverse
variety of colors, illuminations, identities, viewing angles, shapes, and expressions.

For high resolution images, we train the deformable generator with 40K faces from FFHQ [127], which
are cropped to 256 × 256 pixels. Similar results corresponding to Figure 11.29 and Figure 11.30 for the
generated basis functions of appearance and geometry, as well as the transferring and recombining the
vectors are demonstrated at Figure 11.31 and Figure 11.32. Since it is well known that the squared Euclidean
distance induced from the MLE loss often yields blurry reconstruction and generation results, we recruit
adversarial training which includes the deformable generator as an actor and a discriminator which acts as
a critic. We extend the MLE loss in Eq. (11.60) with the adversarial loss, i.e., the non-saturating loss [83]
with R1 regularization [170],

min
θ

max
φ

T (θ, φ),

T (θ, φ) = −λ1L(θ) + EZa,Zg [log(1−D(G(Za, Zg; θ);φ))] (11.64)

+ EX [logD(X;φ)] +
λ2

2
EX [‖ ∇D(X;φ) ‖2],

where L(θ) and G(Za, Zg; θ) is defined in Eq.(11.59) and (11.60). D(·;φ) is the discriminator. λ1 = 0.001
and λ2 = 10.

268

Figure 11.31: Extracting appearance and geometric basis functions. The typical appearance basis functions
are shown in the first two rows. Each dimension of the appearance latent vector encodes appearance infor-
mation such as color, illumination and gender. In the fist line, from left to right, the illumination changes
from light to dark. In the second line, the color of background varies from black to white, and the gender
changes from a woman to a man. The Representative geometric basis functions are demonstrated in the
rest of four rows with the corresponding deformable grids overlaid. Each dimension of the geometric latent
vector encodes fundamental geometric information such as viewing angle and shape. In the third line, the
pose of the face varies from left to right. In fifth line, the shape of the face changes from thin to fat from
left to the right. The deformable generator model is trained on the 40,000 face images randomly selected
from FFHQ dataset [127]. The training images are cropped to 256× 256 pixels, and the faces have different
colors, illuminations, identities, viewing angles, shapes, and expressions.

11.2.6 Dynamic generator model

Let X = (It, t = 1, ..., T) be the observed video sequence, where xt is a frame at time t. The dynamic
generator model consists of the following two components:

st = Fα(st−1, ξt), (11.65)

xt = Gβ(st) + εt, (11.66)

269

Figure 11.32: Transferring and recombining the abstracted geometric and appearance knowledge. The first
row shows 8 unseen faces from FFHQ. The second row shows the generated faces by transferring and
recombining 2th-8th faces’ geometric vectors with first face’s appearance vector. The third row shows the
generated faces by recombining the 2th-8th faces’ appearance vectors with the first face’s geometric vector
in the first row. The deformable generator model is trained on the 40,000 face images randomly selected
from FFHQ dataset [127]. The training images are cropped to 256× 256 pixels, and the faces have different
colors, illuminations, identities, viewing angles, shapes, and expressions.

where t = 1, ..., T . (11.65) is the transition model, and (11.66) is the emission model. st is the d-dimensional
hidden state vector. ξt ∼ N(0, I) is the noise vector of a certain dimensionality. The Gaussian noise vectors
(ξt, t = 1, ..., T) are independent of each other. The sequence of (st, t = 1, ..., T) follows a non-linear auto-
regressive model, where the noise vector ξt encodes the randomness in the transition from st−1 to st in the
d-dimensional state space. Fα is a feedforward neural network or multi-layer perceptron, where α denotes
the weight and bias parameters of the network. We can adopt a residual form [98] for Fα to model the
change of the state vector. xt is the D-dimensional image, which is generated by the d-dimensional hidden
state vector st. Gβ is a top-down convolutional network (sometimes also called deconvolution network),
where β denotes the weight and bias parameters of this top-down network. εt ∼ N(0, σ2ID) is the residual
error. We let θ = (α, β) denote all the model parameters.

Let ξ = (ξt, t = 1, ..., T). ξ consists of the latent random vectors that need to be inferred from X .
Although xt is generated by the state vector st, S = (st, t = 1, ..., T) are generated by ξ. In fact, we can
write X = Hθ(ξ) + ε, where Hθ composes Fα and Gβ over time, and ε = (εt, t = 1, ..., T) denotes the
observation errors.

Let p(ξ) be the prior distribution of ξ. Let pθ(X|ξ) ∼ N(Hθ(ξ), σ
2I) be the conditional distribution of

X given ξ, where I is the identity matrix whose dimension matches that of X . The marginal distribution
is pθ(X) =

∫
p(ξ)pθ(X|ξ)dξ with the latent variable ξ integrated out. We estimate the model parameter

θ by the maximum likelihood method that maximizes the observed-data log-likelihood log pθ(X), which
is analytically intractable. In contrast, the complete-data log-likelihood log pθ(ξ,X), where pθ(ξ,X) =
p(ξ)pθ(X|ξ), is analytically tractable. The following identity links the gradient of the observed-data log-
likelihood log pθ(X) to the gradient of the complete-data log-likelihood log pθ(ξ,X):

∂

∂θ
log pθ(X) =

1

pθ(X)

∂

∂θ
pθ(X)

270

=
1

pθ(X)

∫ [
∂

∂θ
log pθ(ξ,X)

]
pθ(ξ,X)dξ

= Epθ(ξ|X)

[
∂

∂θ
log pθ(ξ,X)

]
, (11.67)

where pθ(ξ|X) = pθ(ξ,X)/pθ(X) is the posterior distribution of the latent ξ given the observed X . The
above expectation can be approximated by Monte Carlo average. Specifically, we sample from the posterior
distribution pθ(ξ|X) using the Langevin dynamics:

ξ(τ+1) = ξ(τ) +
δ2

2

∂

∂ξ
log pθ(ξ

(τ)|X) + δzτ , (11.68)

where τ indexes the time step of the Langevin dynamics (not to be confused with the time step of the
dynamics model, t), zτ ∼ N(0, I) where I is the identity matrix whose dimension matches that of ξ, and
ξ(τ) = (ξ

(τ)
t , t = 1, ..., T) denotes all the sampled latent noise vectors at time step τ . δ is the step size of

the Langevin dynamics. We can correct for the finite step size by adding a Metropolis-Hastings acceptance-
rejection step. After sampling ξ ∼ pθ(ξ|X) using the Langevin dynamics, we can update θ by stochastic
gradient ascent

∆θ ∝ ∂

∂θ
log pθ(ξ,X), (11.69)

where the stochasticity of the gradient ascent comes from the fact that we use Monte Carlo to approximate
the expectation in (11.67). The learning algorithm iterates the following two steps. (1) Inference step: Given
the current θ, sample ξ from pθ(ξ|X) according to (12.59). (2) Learning step: Given ξ, update θ according to
(11.69). We can use a warm start scheme for sampling in step (1). Specifically, when running the Langevin
dynamics, we start from the current ξ, and run a finite number of steps. Then we update θ in step (2) using
the sampled ξ. Such a stochastic gradient ascent algorithm has been analyzed by [267].

Since ∂
∂ξ log pθ(ξ|X) = ∂

∂ξ log pθ(ξ,X), both steps (1) and (2) involve derivatives of

log pθ(ξ,X) = −1

2

[
‖ξ‖2 +

1

σ2
‖X −Hθ(ξ)‖2

]
+ const,

where the constant term does not depend on ξ or θ. Step (1) needs to compute the derivative of log pθ(ξ,X)
with respect to ξ. Step (2) needs to compute the derivative of log pθ(ξ,X) with respect to θ. Both can be
computed by back-propagation through time. Therefore the algorithm is an alternating back-propagation
through time algorithm. Step (1) can be called inferential back-propagation through time. Step (2) can be
called learning back-propagation through time.

To be more specific, the complete-data log-likelihood log pθ(ξ,X) can be written as (up to an additive
constant, assuming σ2 = 1)

L(θ, ξ) = −1

2

T∑
t=1

[
‖xt −Gβ(st)‖2 + ‖ξt‖2

]
. (11.70)

The derivative with respect to β is

∂L

∂β
=

T∑
t=1

(It −Gβ(st))
∂Gβ(st)

∂β
. (11.71)

271

The derivative with respect to α is

∂L

∂α
=

T∑
t=1

(It −Gβ(st))
∂Gβ(st)

∂st

∂st
∂α

, (11.72)

where ∂st
∂α can be computed recursively. To infer ξ, for any fixed time point t0,

∂L

∂ξt0
=

T∑
t=t0+1

(It −Gβ(st))
∂Gβ(st)

∂st

∂st
∂ξt0

− ξt0 , (11.73)

where ∂st
∂ξt0

can again be computed recursively.
A minor issue is the initialization of the transition model. We may assume that s0 ∼ N(0, I). In the

inference step, we can sample s0 together with ξ using the Langevin dynamics.
It is worth mentioning the difference between our algorithm and the variational inference. While vari-

ational inference is convenient for learning a regular generator network, for the dynamic generator model
studied in this paper, it is not a simple task to design an inference model that infers the sequence of la-
tent vectors ξ = (ξt, t = 1, ..., T) from the sequence of X = (It, t = 1, ..., T). In contrast, our learning
method does not require such an inference model and can be easily implemented. The inference step in
our model can be done via directly sampling from the posterior distribution pθ(ξ|X), which is powered by
back-propagation through time. Additionally, our model directly targets maximum likelihood, while model
learning via variational inference is to maximize a lower bound.

We first learn the model for dynamic textures, which are sequences of images of moving scenes that
exhibit stationarity in time. We learn a separate model from each example. The video clips for training are
collected from DynTex++ dataset and the Internet. Each observed video clip is prepared to be of the size
64 pixels × 64 pixels × 60 frames. The transition model is a feedforward neural network with three layers.
The network takes a 100-dimensional state vector st−1 and a 100-dimensional noise vector ξt as input and
produces a 100-dimensional vector rt, so that st = tanh(st−1 + rt). The numbers of nodes in the three
layers of the feedforward neural network are {20, 20, 100}. The emission model is a top-down deconvolution
neural network or generator model that maps the 100-dimensional state vector (i.e., 1×1×100) to the image
frame of size 64×64×3 by 6 layers of deconvolutions with kernel size of 4 and up-sampling factor of 2 from
top to bottom. The numbers of channels at different layers of the generator are {512, 512, 256, 128, 64, 3}.
Batch normalization [117] and ReLU layers are added between deconvolution layers, and tanh activation
function is used at the bottom layer to make the output signals fall within [−1, 1]. We use the Adam [131]
for optimization with β1 = 0.5 and the learning rate is 0.002. We set the Langevin step size to be δ = 0.03
for all latent variables, and the standard deviation of residual error σ = 1. We run l = 15 steps of Langevin
dynamics for inference of the latent noise vectors within each learning iteration.

Once the model is learned, we can synthesize dynamic textures from the learned model by firstly ran-
domly initializing the initial hidden state s0, and then following Equation (11.65) and (11.66) to generate a
sequence of images with a sequence of innovation vectors {ξt} sampled from Gaussian distribution. In prac-
tice, we use "burn-in" to throw away some iterations at the beginning of the dynamic process to ensure the
transition model enters the high probability region (i.e., the state sequence {st} converges to stationarity),
no matter where s0 starts from.

To speed up the training process and relieve the burden of computer memory, we can use truncated back-
propagation through time in training our model. That is, we divide the whole training sequence into different
non-overlapped chunks, and run forward and backward passes through chunks of the sequence instead of
the whole sequence. We carry hidden states {st} forward in time forever, but only back-propagate for the

272

ob
s

sy
n1

sy
n2

(a) burning fire heating a pot
ob

s
sy

n1
sy

n2

(b) flapping flag

ob
s

sy
n1

sy
n2

(c) waterfall

ob
s

sy
n1

sy
n2

(d) flashing lights

ob
s

sy
n1

sy
n2

(e) flame

Figure 11.33: Generating dynamic textures. For each category, the first row displays 6 frames of the ob-
served sequence, and the second and third rows show the corresponding frames of two synthesized sequences
generated by the learned model.

273

length (the number of image frames) of chunk. In this experiment, the length of chunk is set to be 30 image
frames.

An “infinite length” dynamic texture can be synthesized from a typically “short” input sequence by
just drawing “infinite” IID samples from Gaussian distribution. Figure 11.33 shows five results. For each
example, the first row displays 6 frames of the observed 60-frame sequence, while the second and third rows
display 6 frames of two synthesized sequences of 120 frames in length, which are generated by the learned
model.

11.2.7 Unsupervised clustering and semi-supervised classification

The generator model can be generalized to incorporate class label y. We can then let x = gθ(y, z) + ε.
For each I, we can sample y and z from their posterior distribution by the Gibbs sampler. This enables us
to perform unsupervised clustering. For semi-supervised learning where y is observed for some I, we can
simply fix y at the observed value and only sample z in infernece.

Figure 11.34: Generated samples by our proposed method. Each row shares the same z and each column shares the
same y. Left: Generate samples on the MNIST dataset [141]. Middle: Generated samples on the SVHN dataset [181].
Right: Generated samples on the STL-10 dataset [33].

Figure 11.34 shows results on unsupervised clustering. Table 11.1 displays numerical evaluations.

Method K MNIST SVHN STL-10
K-means 10 53.49% 28.40% –

AAE [158] 16 83.48% 80.01% –
DEC [264] 10 84.30% 80.62% 11.90%
VaDE [121] 10 94.46% 84.45% –

HashGAN [23] 10 96.50% 39.40% –
CVAE [135] 10 82.26% 62.37% 58.25%

IIC [120] 10 99.2% – 59.6%
Our method 10 98.35% 85.15% 75.30%

Table 11.1: Comparison of unsupervised clustering accuracy (ACC) for various methods on different datasets.

For semi-supervised learning, we consider three widely adopted benchmark datasets: MNIST, SVHN
and CIFAR-10 [138]. Following the standard routine as in previous works, we randomly sample 100, 1,000
and 4,000 labelled images from the MNIST, SVHN and CIFAR-10 respectively during training, and use

274

their testing sets for classification evaluation. We compare our model with the semi-supervised baseline
models. Table 11.2 shows the comparison results.

Method MNIST (n=100) SVHN (n=1000) CIFAR-10 (n=4000)
Ladder [198] 1.06 - 20.40

Conv-Ladder [198] 0.89 - -
CatGAN [225] 1.39 - 19.58

Improved-GAN [212] 0.93 8.11 18.63
VAT [173] 2.33 - 24.63

Triple-GAN [31] 0.91 5.77 16.99
CVAE(M1+M2) [135] 3.33 36.02 -

Our method 0.89 5.62 14.25

Table 11.2: Comparison of semi-supervised classification error rate (%) for various methods on three datasets.

The learned generative model leads to a short-run inference dynamics for classification. We have also
tested it on adversarial robustness for classification tasks and obtained state of the art results. The top-down
model can easily explain away adversarial perturbations.

11.2.8 Short-run inference dynamics

We can use a short run inference dynamics guided by the posterior distribution of the latent variables as an
approximate inference engine. To make it more concrete, we employ a finite-step gradient descent on the
negative log-posterior distribution of the latent variables. For each training example, within each learning
iteration, we always initialize such a short run gradient flow from the prior distribution such as Gaussian
or uniform noise distribution, and run a finite number (e.g., 20) of steps of gradient descent updates. This
amounts to a residual network or a recurrent neural network (RNN) that transforms the initial noise distribu-
tion to an approximate posterior distribution. We optimize the step size of the gradient flow by minimizing
the Kullback-Leibler divergence between the approximate distribution produced by this short run infer-
ence dynamics and the true posterior distribution. Thanks to the computing capacities of the modern deep
learning platforms, it is possible to compute the approximate distribution and its entropy, and optimize the
aforementioned Kullback-Leibler divergence. This is similar to variational inference, except that the vari-
ational parameter is the step size of the gradient descent, or in general, the tuning parameters of the short
run inference dynamics. Our experiments show that the proposed method outperforms the VAE in terms of
reconstruction error and synthesis quality.

This method is similar to MCMC posterior sampling except that we focus on the optimization of a short
run version of MCMC sampling. Such short run inference dynamics is easily affordable on current deep
learning platforms and there is no much difficulty to scale it up to big datasets. The method is also similar
to variational inference except that the inference model is simply a noise initialized finite-step gradient flow,
where the only extra parameter is the step sizes of the gradient flow or in general some tuning parameters of
the short run inference dynamics.

One major advantage of the proposed method is that it is natural and automatic. For models with multi-
ple layers of latent variables that may be organized in complex top-down architectures, the gradient descent
update of the log-posterior of the latent variables can be automatically obtained on modern deep learning
platforms. Such gradient descent update naturally integrates explaining-away competitions and bottom-up
and top-down interactions between multiple layers of latent variables. By optimizing the step size of the
gradient descent update using the variational criterion, it is possible to have a good approximate posterior

275

distribution and an efficient inference engine. It thus enables researchers to explore sophisticated gener-
ative models without worrying about constructing the presumably more sophisticated inference models.
z|ISpecifically, we use the following short run inference dynamics for the generator model:

z0 ∼ p(z), zk+1 = zk + s
∂

∂z
log pθ(zk|x), k = 1, ...,K, (11.74)

where p(z) is the prior distribution of z, i.e., N (0, Id). Starting from p(z), we run K (e.g., K = 20) steps
of gradient descent on − log pθ(z|I) with step size s, and we take zK to be an approximate sample from
pθ(z|I).

We can write the above dynamics as

z0 ∼ p(z), zk+1 = zk + sR(zk), k = 1, ...,K, (11.75)

where R(z) = ∂
∂z log pθ(z|I), where we omit I and θ in R(z) for the simplicity of notation. For finite K,

this dynamics is a K-layer residual network, or K-step recurrent neural network.
To further simplify the notation, we may write the dynamics as

z0 ∼ p(z), zK = F (z0), (11.76)

where F composes theK steps of gradient descent. The above model can be considered a flow-based model,
where F consists of K-step flow of gradient updates. Let the distribution of zK be qs(z), where we include
the notation s to make it explicit that the distribution of zK depends on the step size s. Recall that the
distribution of zK also depends on I and θ, so that in full notation, we may write qs(z) as qs,θ(z|I).

By change of variable,

zK ∼ qs(z) = p(F−1(z))|det(dF−1(z)/dz)|. (11.77)

We may treat qs(z) as a flow-like variational inference model.
We want to optimize the step size s so that qs(z) best approximates the true posterior pθ(z|I). This can

be accomplished by
min
s

KL(qs(z)‖pθ(z|I)). (11.78)

This is similar to variational approximation, with step size s being the variational parameter.

KL(qs(z)‖pθ(z|I)) = Eqs(z)[log qs(z)− log pθ(I, z)] + log pθ(I), (11.79)

where the last term log pθ(I) is independent of s, and for the first two terms on the right hand side,

Eqs(z)[log pθ(I, z)] = Ep(z0)[log pθ(I, F (z0))], (11.80)

Eqs(z)[log qs(z)] = Ep(z0)[log p(z0)]− log |det(dF (z0)/dz0)|]. (11.81)

In the above two equations, Ep(z0) can be approximated by random samples from z0 ∼ p(z), e.g.,N (0, Id).
In the above computations, we do not need to invert F , but we need to compute the log determinant of

the Jacobian dF (z0)/dz0. Here it is surprisingly fortunate that on modern deep learning platforms with auto-
differentiations based on computational graphs, such computation is easily feasible even if the dimension
of z0 is very high. For a sampled z0 ∼ p(z), after computing the matrix dF (z0)/dz0, we can compute the
eigenvalues of dF (z0)/dz0, so that the log-determinant is the sum of the log of the eigenvalues. Then we
can optimize the step size s by minimizing KL(qs(z)‖pθ(z|I)) via a grid search or gradient descent (which
is still computable).

276

Here we assume a constant step size s. We can also allow varying step sizes s = (sk, k = 1, ...,K),
and optimize over (sk). We may also add momentum to gradient descent dynamics and optimize associated
algorithmic parameters.

The learning with short-run inference is based on

KL(pdata(I)qs,θt(z|I)‖p(z)pθ(I|z)) = KL(pdata(I)‖pθ(I)) + KL(qs,θt(z|I)‖pθ(z|I)), (11.82)

where minimizing KL(qs,θt(z|I)‖pθ(z|I)) with respect to s minimizes the perturbation from MLE (a sub-
tlety in notation is that in this conditional KL-divergence, we also average over pdata(I), i.e., we minimize
s shared by all the training examples).

Each learning iteration for θ is based on gradient descent of (11.82), which leads to the update

θt+1 = θt + ηt
1

n

n∑
i=1

Eqs,θt (zi|xi)

[
∂

∂θ
log pθ(Ii, zi) |θ=θt

]
, (11.83)

where ηt is the step size or learning rate, Eqs,θt (zi|xi) (here we use the full notation qs,θ(z|I) instead of the
abbreviated notation qs(z)) can be approximated by sampling from qs,θt(zi|xi) using the noise initializedK-
step gradient descent. Compared to MLE learning algorithm, we replace pθt(z|I) by qs,θt(z|I), and Monte
Carlo samples from qs,θ(z|I) can be obtained exactly.

The learning algorithm (11.83) solves the following estimating equation:

1

n

n∑
i=1

Eqs,θ(zi|xi)

[
∂

∂θ
log pθ(Ii, zi)

]
= 0, (11.84)

which is a perturbation of the MLE estimating equation.
The learning algorithm is a Robbins-Monro algorithm for stochastic approximation to solve the above

estimating equation. For fixed s, its convergence follows from regular conditions of Robbins-Monro. Unlike
the original maximum likelihood learning, qs,θ(z|I) can be sampled exactly so that Robbins-Monro theory
applies. This greatly simplifies the analysis of the algorithm.

The bias of the learned θ based on the short run inference dynamics relative to the MLE depends on
the gap between qs,θ(z|I) and pθ(z|I). Based on the left-hand side of (11.82), while the short-run qs,θt(z|I)
seeks to get close to the model by optimizing its s, the model also tends to get close to the short-run inference
by updating θ. Thus the bias may actually be beneficial to the short-run inference.

We evaluate the learned generator gθ(z) fidelity of generated examples quantitatively on various datasets,
each reduced to 40, 000 observed examples. Table 11.3 (a) compares the Fréchet Inception Distance (FID)
with Inception v3 classifier [228] on 40, 000 generated examples. Despite its simplicity, short run inference
dynamics is competitive to elaborate means of inference in VAE models.

We evaluate the accuracy of the learned inference dynamics qs,θt(z|Ii) by reconstructing test images. In
contrast to traditional MCMC posterior sampling with persistent chains, short run inference with small K
allows not only for efficient learning on training examples, but also the same dynamics can be recruited for
testing examples.

Figure 11.36 compares the reconstructions of learned generators withL = 5 layers by VAE and short run
inference on CelebA (64×64×3). The fidelity of reconstructions by short run inference appears qualitatively
improved over VAE, which is quantitatively confirmed by a consistently lower MSE in Table 11.3.

11.3 Stochastic Adversarial Defense using Deep Frame

The vulnerability of deep networks to adversarial attacks is a central problem for deep learning from the
perspective of both cognition and security. The outputs of deep networks are known to be very sensitive

277

MNIST SVHN CelebA
Models MSE FID MSE FID MSE FID

VAE, L=1 0.020 - 0.019 46.78 0.031 69.90
VAE, L=3 0.018 - 0.015 41.72 0.029 58.33
VAE, L=5 0.018 - 0.014 39.26 0.028 53.40

Ours, L=1 0.019 - 0.018 44.86 0.019 45.80
Ours, L=3 0.017 - 0.015 39.02 0.018 41.20
Ours, L=5 0.015 - 0.011 35.23 0.011 37.29

Table 11.3: Comparison of generators gθ(z) with varied number of latent layers L learned by VAE and
short run inference with respect to MSE of reconstructions and FID of generated samples of size for MNIST
(28 × 28), SVHN (32 × 32 × 3), and CelebA (32 × 32 × 3) datasets. (FID on MNIST is not considered
meaningful or reflecting human judgment of synthesis quality and hence omitted.)

Figure 11.35: Generated samples for K = 20 short run inference steps with L = 5 layers. From left to
right: (1) MNIST (28× 28), (2) SVHN (32× 32× 3), (3) CelebA (32× 32× 3).

to small perturbations to the input. This sensitivity can be exploited to create adversarial examples that
undermine robustness by causing trained networks to produce defective results from input changes that are
imperceptible to the human eye.

There exist both adversarial attack methods and adversarial defense methods to combat those attacks.
A defense mechanism which we refer to as "Adversarial Purification" uses iterative refinement to purify

and remove adversarial signals from an input image before it is sent to an image classifier. The heart
of the purification method is the Deep Frame Descriptive Model known by its alternate name "Energy-
Based Model" (EBM). The trajectory in the image space that results from iterative refinement distinguishes
adversarial purification from defenses that pre-process before classification using a one-time treatment such
as rotation [cite], discretization [cite], or neural based reconstruction [cite]. Here we demonstrate a defense
method

278

Figure 11.36: Comparison of reconstructions between VAE samples and our method on CelebA (64×64×3)
with L = 5. Top: original test images. Middle: reconstructions from VAE. Bottom: reconstructions by short
run inference.

279

12

A Tale of Three Families: Discriminative,
Generative and Descriptive Models

12.1 Introduction

In this chapter, we shall review these three families of models within a common framework and explore
their connections. We shall start from the flat linear forms of these models. Then we shall present the
hierarchical non-linear models, where the non-linear mappings in these models are parametrized by neural
networks [139, 141] that have proved exceedingly effective in approximating non-linear relationships.

Currently the most successful family of models are the discriminative models. A discriminative model
is in the form of the conditional distribution of the class label given the input signal. The normalizing con-
stant of such a probability model is a summation over the finite number of class labels or categories. It is
readily available, so that the model can be easily learned from big datasets. The learning of the descrip-
tive models and the generative models can be much more challenging. A descriptive model is defined as a
probability distribution of the signal, which is usually of a high dimensionality. The normalizing constant
of such a model is an integral over the high dimensional signal and is analytically intractable. A generative
model involves latent variables that follow some prior distribution, so that the marginal distribution of the
observed signal is obtained by integrating out the latent variables, and this integral is also analytically in-
tractable. Due to the intractabilities of the integrals in the descriptive and generative models, the learning
of such models usually requires Markov chain Monte Carlo (MCMC) sampling [78, 156]. Specifically, the
learning of the descriptive models require MCMC sampling of the synthesized signals, while the learning
of the generative models require MCMC sampling of the latent variables. Nonetheless, we shall show that
such learning methods work reasonably well, where the gradient-based Langevin dynamics [180] can be
employed conveniently for MCMC sampling, which is an inner loop within the gradient-based learning of
the model parameters.

Because of the high capacity of the neural networks in approximating highly non-linear mappings, the
boundary between representation and computation is blurred in neural networks. A deep neural network
can be used to represent how the signal is generated or how the features are defined. It can also be used to
approximate the solution of a computational problem such as optimization or sampling. For example, the
iterative sampling of the latent variables of a generative model can be approximated by an inference model
that provides the posterior samples directly, as is the case with the wake-sleep algorithm [102] and the
variational auto-encoder (VAE) [132, 174, 201]. As another example, the iterative sampling of a descriptive
model can be approximated by a generative model that can generate the signal directly [259]. In general, the
solutions to the on-line computational problems can be encoded by high capacity neural networks, so that

281

iterative computations only occur in the off-line learning of the model parameters.
The three families of models do not exist in isolation. There are intimate connections between them.

[90, 92] proposed to integrate the descriptive and generative models into a hierarchical model. [237, 238]
proposed data-driven MCMC where the MCMC is to fit the generative models, but the proposal distributions
for MCMC transitions are provided by discriminative models. The discriminative model and the descriptive
model can be translated into each other via the Bayes rule. Tu [236] exploited this relationship to learn the
descriptive model via discriminative training, thus unifying the two models. Similarly, the discriminative
model can be paired with the generative model in the generative adversarial networks (GAN) [83], and
the adversarial learning has become an alternative framework to likelihood-based learning. The descriptive
model and the generative model can also be paired up so that they can jump-start each other’s MCMC
sampling. Moreover, the family of descriptive models and the family of generative models overlap in terms
of undirected latent energy-based models.

12.2 Non-hierarchical linear forms of the three families

We shall first review the non-hierarchical linear forms of the there families of models within a common
framework.

12.2.1 Discriminative models

This subsection reviews the linear form of the discriminative models.
The table below displays the dataset for training the discriminative models.

input features output

1 I>1 h>1 Y1

2 I>2 h>2 Y2

...
n I>n h>n Yn

There are n training examples. For the i-th example, let Ii = (Iij , j = 1, ..., p)> be the p-dimensional
input signal (the (n, p) notation is commonly used in statistics to denote the number of observations and the
number of predictors). Let Yi be the outcome label. In the case of classification, Yi is categorical or binary.
hi = (hik, k = 1, ..., d)> is the d-dimensional vector of features or hidden variables.

The discriminative models can be represented by the diagram below,

output : Yi
↑

features : hi
↑

input : Ii

(12.1)

where the vector of features hi is computed from Ii via hi = h(Ii). In a non-hierarchical or flat model, the
feature vector hi is designed, not learned, i.e., h() is a pre-specified non-linear transformation.

For the case of binary classification where Yi ∈ {+1,−1}, (Yi, Ii) follow a logistic regression

log
Pr(Yi = +|Ii)
Pr(Yi = −|Ii)

= h>i θ + b, (12.2)

282

where θ is the d-dimensional vector of weight or coefficient parameters, and b is the bias or intercept param-
eter. The classification can also be based on the perceptron model

Ŷi = sign(h>i θ + b), (12.3)

where sign(r) = +1 if r ≥ 0, and sign(r) = −1 otherwise. Both the logistic regression and the perceptron
can be generalized to the multi-category case. The bias term b can be absorbed into the weight parameters θ
if we fix hi1 = 1.

Let f(X) = h(X)>θ. f(X) captures the relationship between X and Y . Because h(X) is non-linear,
f(X) is also non-linear. We say the model is in the linear form because it is linear in θ, or f(X) is a linear
combination of the features in h(X). The following are the choices of h() in various discriminative models.

Kernel machine [36]: hi = h(Ii) is implicit, and the dimension of hi can potentially be infinite. The
implementation of this method is based on the kernel trick 〈h(X), h(X ′)〉 = K(X,X ′), whereK is a kernel
that is explicitly used by the classifier such as the support vector machine [36]. f(X) = h(X)>θ belongs
to the reproducing kernel Hilbert space where the norm of f can be defined as the Euclidean norm of θ, and
the norm is used to regularize the model. A Bayesian treatment leads to the Gaussian process, where θ is
assumed to follow N(0, σ2Id), and Id is the identity matrix of dimension d. f(X) is a Gaussian process
with Cov(f(X), f(X ′)) = σ2K(X,X ′).

Boosting machine [65]: For hi = (hik, k = 1, ..., d)>, each hik ∈ {+,−} is a weak classifier or a binary
feature extracted from X , and f(X) = h(X)>θ is a committee of weak classifiers.

CART [20]: In the classification and regression trees, there are d rectangle regions {Rk, k = 1, ..., d}
resulted from recursive binary partition of the space of X , and each hik = 1(Ii ∈ Rk) is the binary indicator
such that hik = 1 if Ii ∈ Rk and hik = 0 otherwise. f(X) = h(X)>θ is a piecewise constant function.

MARS [72]: In the multivariate adaptive regression splines, the components of h(X) are hinge functions
such as max(0, xj − t) (where xj is the j-th component of X , j = 1, ..., p, and t is a threshold) and their
products. It can be considered a continuous version of CART.

Encoder and decoder: In the diagram in (12.1), the transformation Ii → hi is called an encoder, and
the transformation hi → Yi is called a decoder. In the non-hierarchical model, the encoder is designed, and
only the decoder is learned. This is different from the auto-encoder in unsupervised learning.

The outcome Yi can also be continuous or a high-dimensional vector. The learning then becomes a
regression problem. Both classification and regression are about supervised learning because for each input
Ii, an output Yi is provided as supervision. The reinforcement learning is similar to supervised learning
except that the guidance is in the form of a reward function.

12.2.2 Descriptive model

This subsection describes the linear form of the descriptive models and the maximum likelihood learning
algorithm.

The descriptive models [275] can be learned in the unsupervised setting, where Yi are not observed, as
illustrated by the table below.

input features output

1 I>1 h>1 ?
2 I>2 h>2 ?
...
n I>n h>n ?

283

The linear form of the descriptive model is an exponential family model. It specifies a probability
distribution on the signal Ii via an energy function that is a linear combination of the features,

pθ(X) =
1

Z(θ)
exp

[
h(X)>θ

]
p0(X) (12.4)

where h(X) is the d-dimensional feature vector extracted from X , and θ is the d-dimensional vector of
weight parameters. p0(X) is a known reference distribution such as the white noise modelX ∼ N(0, σ2Ip),
or the uniform distribution within a bounded range.

Z(θ) =

∫
exp[h(X)>θ]p0(X)dX = Ep0{exp[h(X)>θ]} (12.5)

is the normalizing constant (Ep denotes the expectation with respect to p). It is analytically intractable.
The descriptive model (12.4) has the following information theoretical property [4,44,279]. Let Pdata be

the distribution that generates the training data {Ii}. Let Θ = {pθ,∀θ} be the family of distributions defined
by the descriptive model. Let Ω = {p : Ep[h(X)] = ĥ}, where ĥ = EPdata

[h(X)]. ĥ can be estimated from
the observed data by the sample average:

∑n
i=1 h(Ii)/n. Ω is the family of distributions that reproduce the

observed ĥ. Let p̂ = pθ̂ ∈ Θ ∪ Ω be the intersection between Θ and Ω. Then for any pθ ∈ Θ and any

Figure 12.1: The two curves illustrate Θ and Ω respectively, where each point is a probability distribution.

p ∈ Ω, we have KL(p||pθ) = KL(p||p̂) + KL(p̂||pθ), which can be interpreted as a Pythagorean property
that defines orthogonality. KL(p||q) = Ep[log(p(X)/q(X))] denotes the Kullback-Leibler divergence from
p to q. Thus Θ and Ω are orthogonal to each other, Θ ⊥ Ω, as illustrated by Figure 12.1.

This leads to the following dual properties of p̂, which can be considered the learned model:
(1) Maximum likelihood. p̂ = arg minΘ KL(Pdata||pθ). That is, p̂ is the projection of Pdata on Θ.

KL(Pdata||pθ) = EPdata
[logPdata(X)] − EPdata

[log pθ(X)]. The second term EPdata
[log pθ(X)] is the

population version of the log-likelihood. Thus minimizing KL(Pdata|pθ) is equivalent to maximizing the
likelihood.

(2) Maximum entropy: p̂ = arg minΩ KL(p||p0). That is, p̂ is the minimal modification of p0 to
reproduce the observed feature statistics ĥ. KL(p||p0) = Ep[log p(X)] − Ep[log p0(X)]. If p0 is the
uniform distribution, then the second term is a constant, and the first term is the negative entropy. In that
case, minimizing KL(p||p0) is equivalent to maximizing the entropy over Ω.

Given the training data {Ii}, let L(θ) =
∑n

i=1 log pθ(Ii)/n be the log-likelihood. The gradient of L(θ)
is

L′(θ) =
1

n

n∑
i=1

h(Ii)− Eθ[h(X)], (12.6)

284

because ∂ logZ(θ)/∂θ = Eθ[h(X)], where Eθ denotes the expectation with respect to pθ. This leads to a
stochastic gradient ascent algorithm for maximizing L(θ),

θt+1 = θt + ηt

[
1

n

n∑
i=1

h(Ii)−
1

n

n∑
i=1

h(Ii)

]
, (12.7)

where {Ii, i = 1, ..., n} are random samples from pθt , and ηt is the learning rate. The learning algorithm has
an “analysis by synthesis” interpretation. The {Ii} are the synthesized data generated by the current model.
The learning algorithm updates the parameters in order to make the synthesized data similar to the observed
data in terms of the feature statistics. At the maximum likelihood estimate θ̂, the model matches the data:
Eθ̂[h(X)] = EPdata

[h(X)].
One important class of descriptive models are the Markov random field models [18, 79], such as the

Ising model in statistical physics. Such models play an important role in the pattern theory.

Figure 12.2: Two types of potential functions learned by [276] from natural images. The function on the
left encourages big filter responses and creates patterns via reaction, while the function on the right prefers
small filter responses and smoothes the synthesized image via diffusion.

One example of the descriptive model (12.4) is the FRAME (Filters, Random field, And Maximum
Entropy) model [256, 279], where h(X) consists of histograms of responses from a bank of filters. In a
simplified non-convolutional version, h(X)>θ = f(WX) =

∑d
k=1 fk(WkX), where W is a d× p matrix,

and Wk is the k-th row of W . WX consists of the d filter responses with each row of W being a linear
filter. (fk, k = 1, ..., d) are k one-dimensional potential functions applied respectively to the d elements
of WX . In the FRAME model, the rows of W are a bank of Gabor wavelets or filters [43]. Given the
filters, [276] learned the potential functions (−fk, k = 1, ..., d) from natural images. There are two types of
potential functions as shown in Figure 12.2 taken from [276]. The function on the left encourages big filter
responses while the function on the right prefers small filter responses. [276] used the Langevin dynamics to
sample from the learned model. The gradient descent component of the dynamics is interpreted as the Gibbs
Reaction And Diffusion Equations (GRADE), where the function on the left of Figure 12.2 is for reaction
to create patterns, while the function on the right is for diffusion to smooth out the synthesized image.

In [153], the authors illustrate the idea of learning W = (Wk, k = 1, ..., d) by a two-dimensional
example. Each step of the learning algorithm adds a row Wk to the current W . Each row corresponds to a
projection of X . Each step finds a direction of the projection that reveals the maximum difference between
the data points sampled from the current model and the observed data points. The learning algorithm then
updates the model to match the marginal distributions of the model and the data in that direction. After a
few steps, the distribution of the learned model is almost the same as the distribution of the observed data.
By assuming a parametric differentiable form for fk(), W can be learned by gradient descent. Such models
are called product of experts [101, 231] or field of experts [205].

285

Figure 12.3: Learning a two dimensional FRAME model by sequentially adding rows toW . Each row ofW
corresponds to a projection of the data. Each step finds the projection that reveals the maximum difference
between the observed data and the synthesized data generated by the current model.

Figure 12.4: Under the uniform distribution of images defined on a large lattice (that goes to Z2) where
the images share the same marginal histograms of filter responses, the conditional distribution of the local
image patch given its boundary (in blue color) follows the FRAME model.

The FRAME model is convolutional, where the rows of W can be partitioned into different groups, and
the rows in the same group are spatially translated versions of each other, like wavelets. They are called
filters or kernels. The model can be justified by a uniform distribution over the images defined on a large
lattice that goes to Z2, where all the images share the same marginal histograms of filter responses. Under
such a uniform distribution, the distribution of the local image patch defined on a local lattice Λ conditional
on its boundary (illustrated by the blue color, including all the pixels outside Λ that can be covered by the
same filters as the pixels within Λ) follows the FRAME model [256]. See Figure 12.4 for an illustration.

12.2.3 Generative models

This subsection reviews various versions of the linear generative models. These models share the same
linear form, but they differ in terms of the prior assumptions of the latent factors or coefficients.

Like the descriptive models, the generative models can be learned in the unsupervised setting, where Yi
are not observed, as illustrated below:

input hidden output

1 I>1 h>1 ?
2 I>2 h>2 ?
...
n I>n h>n ?

In a generative model, the vector hi is not a vector of features extracted from the signal Ii. hi is a vector

286

of hidden variables that is used to generate Ii, as illustrated by the following diagram:

hidden : hi
↓

input : Ii

(12.8)

The components of the d-dimensional hi are variably called factors, sources, components or causes.
Auto-encoder: hi is also called a code in the auto-encoder illustrated by the following diagram:

code : hi
↑↓

input : Ii

(12.9)

The direction from hi to Ii is called the decoder, and the direction from Ii to hi is called the encoder. The
decoder corresponds to the generative model in (12.8), while the encoder can be considered the inference
model.

Distributed representation and disentanglement: hi = (hik, k = 1, ..., d) is called a distributed repre-
sentation of Ii. Usually the components of hi, (hik, k = 1, ..., d), are assumed to be independent, and (hik)
are said to disentangle the variations in Ii.

Embedding: hi can also be considered the coordinates of Ii, if we embed Ii into a low-dimensional
space, as illustrated by the following diagram:

← hi →
|

← Ii →
(12.10)

In the training data, we find a hi for each Ii, so that {hi, i = 1, ..., n} preserve the relative relations between
{Ii, i = 1, ..., n}. The prototype example of embedding is multi-dimensional scaling, where we want to
preserve the Euclidean distances between the examples. A more recent example of embedding is local
linear embedding [207]. In the embedding framework, there are no explicit encoder and decoder.

Linear generative model: The linear form of the generative model is as follows:

Ii = Whi + εi, (12.11)

for i = 1, ..., n, where W is a p × d dimensional matrix (p is the dimensionality of Ii and d is the dimen-
sionality of hi), and εi is a p-dimensional residual vector. The following are the interpretations of W :

(1) Loading matrix: Let W = (wjk)p×d. xij ≈
∑d

k=1wjkhik, i.e., each component of Ii, xij , is a linear
combination of the latent factors. wjk is the loading weight of factor k on variable j.

(2) Basis vectors: Let W = (Wk, k = 1, ..., d), where Wk is the k-th column of W . Ii ≈
∑d

k=1 hikWk,
i.e., Ii is a linear superposition of the basis vectors (Wk), where hik are the coefficients.

(3) Matrix factorization: (I1, ..., In) ≈ W (h1, ..., hn), where the p × n matrix (I1, ..., In) is factorized
into the p× d matrix W and the d× n matrix (h1, ..., hn).

The following are some of the commonly assumed prior distributions or constraints on hi.
Factor analysis [209]: hi ∼ N(0, Id), Ii = Whi + εi, εi ∼ N(0, σ2Ip), and εi is independent of hi. The

dimensionality of hi, which is d, is smaller than the dimensionality of Ii, which is p. The factor analysis
is very similar to the principal component analysis (PCA), which is a popular tool for dimension reduction.
The difference is that in factor analysis, the column vectors ofW do not need to be orthogonal to each other.

The factor analysis model originated from psychology, where Ii consists of the test scores of student
i on p subjects. hi consists of the verbal intelligence and the analytical intelligence of student i (d = 2).

287

Another example is the decathlon competition, where Ii consists of the scores of athlete i on p = 10 sports,
and hi consists of athlete i’s speed, strength and endurance (d = 3).

Independent component analysis [115]: In ICA, for hi = (hik, k = 1, ..., d), hik ∼ Pk independently,
and Pk are assumed to be heavy-tailed distributions. For analytical tractability, ICA assumes that d = p,
and εi = 0. Hence Ii = Whi, where W is a squared matrix assumed to be invertible. hi = AIi, where A =
W−1. Let P (h) =

∏d
k=1 Pk(hik). The marginal distribution of Ii has a closed form Ii ∼ P (AX)|det(A)|.

The ICA model is both a generative model and a descriptive model.
Sparse coding [188]: In the sparse coding model, the dimensionality of hi, which is d, is bigger than

the dimensionality of Ii, which is p. However, hi = (hik, k = 1, ..., d) is a sparse vector, meaning that only
a small number of hik are non-zero, although for different example i, the non-zero elements in hi can be
different. Thus unlike PCA, sparse coding provides adaptive dimension reduction. W = (Wk, k = 1, ..., d)
is called a redundant dictionary because d > p, and each Wk is a basis vector or a “word” in the dictionary.
Each Ii ≈ Whi =

∑d
k=1 hikWk is explained by a small number of Wk selected from the dictionary,

depending on which hik are non-zero. The inference of the sparse vector hi can be accomplished by Lasso or
basis pursuit [28,232] that minimizes

∑n
i=1

[
‖Ii −Whi‖2 + λ|hi|`1

]
, which imposes the sparsity inducing

`1 regularization on hi with a regularization parameter λ.

Figure 12.5: Sparse coding: learned basis vectors from natural image patches. Each image patch in the
picture is a column vector of W .

A Bayesian probabilistic formulation is to assume a spike-slab prior: hik ∼ ρδ0 + (1− ρ)N(0, τ2) with
a small 1− ρ, which is the probability that hik is non-zero.

Figure 12.5 displays a sparse code learned from a training set of natural image patches of size 12 × 12
[188]. Each column ofW , Wk, is a basis vector that can be made into an image patch as shown in the figure.

Non-negative matrix factorization [146]: In NMF, hi is constrained to have non-negative components,
i.e., hik ≥ 0 for all k. It is also called positive factor analysis [190]. The rationale for NMF is that the parts
of a pattern should be additive and the parts should contribute positively.

Matrix factorization for recommender system [136]: In recommender system, Ii = (xij , j = 1, ..., p)
are the ratings of user i on the p items. For instance, in the Netflix example, there are n users and p movies,
and xij is user i’s rating of movie j. Let wj be the j-th row of matrix W , then xij = 〈wj , hi〉+ εij , where
hi characterizes the desires of user i in d aspects, and wj characterizes the desirabilities of item j in the

288

corresponding aspects. The rating matrix (Ii, i = 1, ..., n) thus admits a rank d factorization. The rating
matrix is in general incomplete. However, we can still estimate (hi) and (wj) from the observed ratings and
use them to complete the rating matrix for the purpose of recommendation.

Probabilistic formulation: In the above models, there is a prior model hi ∼ p(h) or a prior constraint
such as hi is sparse or non-negative. Then there is a linear generative model Ii = Whi + εi, with εi ∼
N(0, σ2Ip), for i = 1, ..., n. This defines the conditional distribution p(X|h;W). The joint distribution is
p(h)p(X|h;W) = p(h,X|W). The marginal distribution is obtained by integrating out h:

p(X|W) =

∫
p(h)p(X|h;W)dh =

∫
p(h,X|W)dh. (12.12)

This integral is analytically intractable. According to the Bayes rule, h can be inferred from X based on
the posterior distribution, p(h|X;W) = p(h,X|W)/p(X|W), which is proportional to p(h,X|W) as a
function of h. We call p(h|X;W) the inference model.

In the auto-encoder terminology, p(h) and p(X|h;W) define the decoder, while p(h|X;W) defines the
encoder. In factor analysis and independent component analysis, h can be inferred in closed form. For other
models, however, h needs to be inferred by an iterative algorithm.

Restricted Boltzmann machine [103]: In RBM, unlike the above models, there is no explicit prior p(h).
The model is defined by the joint distribution

(hi, Ii) ∼ p(h,X|W) =
1

Z(W)
exp

∑
j,k

wjkxjhk

 (12.13)

=
1

Z(W)
exp

[
X>Wh

]
. (12.14)

The above model assumes that both hi and Ii are binary. Under the above model, both the generative distri-
bution p(X|h;W) and the inference distribution p(h|X;W) are independent logistic regressions. We may
modify the model slightly to make X continuous, so that in the modified model, the generative distribu-
tion p(X|h;W) is normal linear regression: X = Wh + ε, with ε ∼ N(0, σ2Ip). The inference model,
p(h|X;W), is logistic regression, h ∼ logistic(W>X), i.e., Pr(hk = 1|X;W) = sigmoid(

∑p
j=1wjkxj),

where sigmoid(r) = 1/(1 + e−r).
If we sum out h, the marginal distribution p(X|W) =

∑
h p(h,X|W) can be obtained in closed form,

and p(X|W) is a descriptive model.
RBM-like auto-encoder [15, 243]: The RBM leads to the following auto-encoder: the encoder is hk =

sigmoid(
∑p

j=1wjkxj), i.e., h = sigmoid(W>X); the decoder is X = Wh.
Like the descriptive model, the generative model can also be learned by maximum likelihood. However,

unlike the “analysis by synthesis” scheme for learning the descriptive model, the learning algorithm for
generative model follows an “analysis by inference” scheme. Within each iteration of the learning algorithm,
there is an inner loop for inferring hi for each Ii. The most rigorous inference method is to sample hi from
the posterior distribution or the inference distribution p(hi|Ii;W). After inferring hi for each Ii, we can
then update the model parameters by analyzing the “imputed” dataset {(hi; Ii)}, by fitting the generative
distribution p(X|h;W). The EM algorithm [46] is an example of this learning scheme, where the inference
step is to compute expectation with respect to p(hi|Ii;W). From a Monte Carlo perspective, it means
we make multiple imputations [208] or make multiple guesses of hi to account for the uncertainties in
p(hi|Ii;W). Then we analyze the multiply imputed dataset to update the model parameters.

289

12.3 Interactions between different families

12.3.1 Discriminative learning of descriptive model

This subsection shows that the descriptive model can be learned discriminatively.
The descriptive model (12.4) can be connected to the discriminative model (12.2) if we treat p0(X) as

the distribution of the negative examples, and pθ(X) as the distribution of the positive examples. Suppose
we generate the data as follows: Yi ∼ Bernoulli(ρ), i.e., Pr(Yi = 1) = ρ, which is the prior probability of
positive examples. [Ii | Yi = 1] ∼ pθ(X), and [Ii | Yi = 0] ∼ p0(X). According to the Bayes rule

log
Pr(Yi = 1 | Ii)
Pr(Yi = 0 | Ii)

= h(Ii)
>θ − logZ(θ) + log[ρ/(1− ρ)], (12.15)

which corresponds to (12.2) with b = − logZ(θ) + log[ρ/(1− ρ)].

Figure 12.6: Discriminative learning of the descriptive model. By fitting a logistic regression to discrimi-
nate between the observed examples and the synthesized examples generated by the current model, we can
modify the current model according to the fitted logistic regression, so that the modified model gets closer
to the distribution of the observed data.

Tu [236] made use of this fact to estimate pθ discriminatively. The learning algorithm starts from p0. At
step t, we let the current pt serve as the negative distribution, and generate synthesized examples from pt.
Then we fit a logistic regression by treating the examples generated by pt as the negative examples, and the
observed examples as the positive examples. Let θ be the estimated parameter of this logistic regression. We
then let pt+1(X) = exp(h(X)>θ)pt(X)/Z. See [236] for an analysis of the convergence of the learning
algorithm.

Figure 12.6 taken from [236] illustrates the learning process by starting from the uniform p0. By itera-
tively fitting the logistic regression and modifying the distribution, the learned distribution converges to the
true distribution.

12.3.2 DDMCMC: integration of discriminative and generative models

In [237,238] the authors proposed a data-driven MCMC method for fitting the generative models as well as
the descriptive models to the data. Fitting such models usually require time-consuming MCMC. In [237,238]

290

Figure 12.7: Data-driven MCMC: when fitting the generative models and descriptive models using MCMC,
the discriminative models can be employed to provide proposals for MCMC transitions.

the authors proposed to speed up the MCMC by using the discriminative models to provide the proposals
for the Metropolis-Hastings algorithm. See Figure 12.7 for an illustration.

12.4 Hierarchical forms of the three families

This section presents the hierarchical non-linear forms of the three families of models, where the non-linear
mappings are parametrized by neural networks, in particular, the convolutional neural networks.

12.4.1 Recent developments

During the past few years, deep convolutional neural networks (CNNs or ConvNets) [139,141] and recurrent
neural networks (RNNs) [104] have transformed the fields of computer vision, speech recognition, natural
language processing, and other fields in artificial intelligence (AI). Even though these neural networks were
invented decades ago, their potentials were realized only recently mainly because of the following two fac-
tors. (1) The availability of big training datasets such as Imagenet [47]. (2) The improvement in computing
power, mainly brought by the graphical processing units (GPUs). These two factors, together with some
recent clever tweaks and inventions such as rectified linear units [139], batch normalization [117], residual
networks [98], etc., enable the training of very deep networks (e.g., 152 layers with 60 million parameters
in a residual network for object recognition [98]) that achieve impressive performances on many tasks in AI
(a recent example being Alpha Go Zero [220]).

One key reason for the successes of deep neural networks is that they are universal and flexible function
approximators. For instance, a feedforward neural network with rectified linear units is a piecewise linear
function with recursively partitioned linear pieces that can approximate any continuous non-linear mapping
[175]. However, this does not fully explain the “unreasonable effectiveness” of deep neural networks. The
stochastic gradient descent algorithm that is commonly employed to train the neural networks is expected to
approach only a local minimum of the highly non-convex objective function. However, for large and deep
networks, it appears that most of the local modes are equally good [32] in terms of training and testing errors,
and the apparent vices of local modes and stochasticity in the mini-batch on-line training algorithm actually
turn out to be big virtues in that they seem to prevent overfitting and lead to good generalization [32].

The approximation capacities of the deep neural networks have been extensively exploited in super-
vised learning (such as classification networks and regression networks) and reinforcement learning (such

291

as policy networks and value networks). They have also proven to be useful for unsupervised learning and
generative modeling, where the goal is to learn features or hidden variables from the observed signals with-
out external guidance such as class labels or rewards. The unsupervised learning is often accomplished in the
context of a generative model (or an auto-encoder), which explains or characterizes the observed examples.

12.4.2 Discriminative models by convolutional neural networks

The neural networks in general and the convolutional neural networks (ConvNet or CNN) in particular were
initially designed for discriminative models. Let X be the p-dimensional input vector, and Y be the output.
We want to predict Y by Ŷ which is a non-linear transformation ofX: Ŷ = fθ(X), where f is parametrized
by parameters θ. In a feedforward neural network, f is a composition of L layers of liner mappings followed
by element-wise non-linear rectifications, as illustrated by the following diagram:

X → h(1) → ...h(l−1) → h(l) → ...→ h(L) → Ŷ , (12.16)

where h(l) is a d(l) dimensional vector which is defined recursively by

h(l) = f (l)(W (l)h(l−1) + b(l)), (12.17)

for l = 1, ..., L. We may treat X as h(0), and Ŷ as h(L+1) and θ = (W (l), b(l), l = 1, ..., L+ 1). W (l) is the
weight matrix and b(l) is the bias or intercept vector at layer l. f (l) is element-wise transformation, i.e., for
v = (v1, ..., vd)

>, f (l)(v) = (f (l)(v1), ..., f (l)(vd))
>.

Compared to the discriminative models in the previous section, we now have multiple layers of features
(h(l), l = 1, ..., L). They are recursively defined via (12.17), and they are to be learned from the training
data instead of being designed.

For classification, suppose there are K categories, the conditional probability of category k given input
X is given by the following soft-max probability:

Pr(Y = k | X) =
fθk(X)∑K
k=1 fθk(X)

, (12.18)

where fθk(X) is the score for category k. We may take fθk(X) = h(L)>W
(L+1)
k + b

(L+1)
k . This final

classification layer is usually called the soft-max layer.
The most commonly used non-linear rectification in modern neural nets is the Rectified Linear Unit

(ReLU) [139]: f (l)(a) = max(0, a). The resulting function fθ(X) can be considered a multi-dimensional
linear spline, i.e., a piecewise linear function. Recall a one-dimensional linear spline is of the form f(x) =
b +

∑d
k=1wk max(0, x − ak), where ak are the knots. At each knot ak, the linear spline takes a turn and

changes its slope by wk. With enough knots, f(x) can approximate any non-linear continuous function.
We can view this f(x) as a simplified two-layer network, with hk = max(0, x − ak). The basis function
max(0, x − ak) is two-piece linear function with a bending at ak. For multi-dimensional input X , a two-
layer network with one-dimensional output is of the following form f(X) = b(2) +

∑d
k=1W

(2)
k h

(1)
k , where

h
(1)
k = max(0,W

(1)
k X+b

(1)
k), andW (1)

k is the k-th row ofW (1). The basis function max(0,W
(1)
k X+b

(1)
k)

is again a two-piece linear function with a bending along the line W (1)
k X + b

(1)
k = 0. The dividing lines

{W (1)
k X + b

(1)
k = 0, k = 1, ..., d(1)} partition the domain of X into up to 2d

(1)
pieces, and f(X) is a

continuous piecewise linear function over these pieces.
In the multi-layer network, the hierarchical layers of {h(l), l = 1, ..., L} partition the domain of X

recursively, creating a piecewise linear function with exponentially many pieces [191]. Such reasoning also

292

applies to other forms of rectification functions f (l), as long as they are non-linear and create bending. This
makes the neural network an extremely powerful machine for function approximation and interpolation. The
recursive partition in neural nets is similar to CART and MARS, but is more flexible.

Back-propagation. Both ∂fθ(X)/∂θ and ∂fθ(X)/∂X can be computed by the chain-rule back-propagation,
and they share the computation of ∂h(l)/∂h(l−1) = f (l)′(W (l)h(l−1) + b(l))W (l) in the chain rule. Because
f (l) is element-wise, f (l)′ is a diagonal matrix.

A recent invention [98] is to reparametrize the mapping (12.17) by h(l) = h(l−1)+f (l)(W (l)h(l−1)+b(l)),
where f (l)(W (l)h(l−1) + b(l)) is used to model the residual term. This enables the learning of very deep
networks. One may think of it as modeling an iterative algorithm where the layers l can be interpreted as
time steps of the iterative algorithm.

Figure 12.8: Filtering or convolution: applying a filter of the size 3×3×3 on an image of the size 6×6×3
to get a filtered image or feature map of 6 × 6 (with proper boundary handling). Each pixel of the filtered
image is computed by the weighted sum of the 3 × 3 × 3 pixels of the input image centered at this pixel.
There are 3 color channels (R, G, B), so both the input image and the filter are three-dimensional.

Figure 12.9: Convolutional neural networks consist of multiple layers of filtering and sub-sampling oper-
ations for bottom-up feature extraction, resulting in multiple layers of feature maps and their sub-sampled
versions. The top layer features are used for classification via multinomial logistic regression. The discrim-
inative direction is from image to category, whereas the generative direction is from category to image.

Convolution. The signal X can be an image, and the linear transformations at each layer may be convo-
lutions with localized kernel functions (i.e. filters). That is, the row vectors of W (l) (as well as the elements
of b(l)) form different groups, and the vectors in the same group are localized and translation invariant ver-
sions of each other, like wavelets. Each group of vectors corresponds to a filter or a kernel or a channel. See

293

Figures 12.8 and 12.9 for illustrations. Recent networks mostly use small filters of the size 3× 3 [222,228].
The minimal size 1 × 1 is also a popular choice [152, 228]. Such a filter fuses the features of different
channels at the same location, and is often used for reducing or increasing the number of channels. When
computing the filtered image, we can also sub-sample it by, e.g., taking one filter response every two pixels.
The filter is said to have stride 2.

12.4.3 Descriptive models

This subsection describes the hierarchical form of the descriptive model and the maximum likelihood learn-
ing algorithm.

We can generalize the descriptive model in the previous sections to a hierarchical form with multiple
layers of features [41, 182, 261, 263],

X → h(1) → ...→ h(L) → fθ(X) (12.19)

which is a bottom-up process for computing fθ(X), and θ collects all the weight and bias parameters at all
the layers. The probability distribution is

pθ(X) =
1

Z(θ)
exp [fθ(X)] p0(X), (12.20)

where again p0(X) is the reference distribution such as Gaussian white noise model p0(X) ∝ exp
(
−‖X‖2/2σ2

)
.

Again the normalizing constant is Z(θ) =
∫

exp(fθ(X))p0(X)dX = Ep0 [exp(fθ(X))]. The energy func-
tion is

Uθ(X) = ‖X‖2/2σ2 − fθ(X). (12.21)

q0(X) can also be a uniform distribution within a bounded range, then Uθ(X) = −fθ(X).
The model (12.20) can be considered a hierarchical generalization of the FRAME model. While the

energy function of the FRAME model is defined in terms of element-wise non-linear functions of filter
responses, model (12.20) involves recursions of this structure at multiple layers according to the ConvNet.

Suppose we observe training examples {Ii, i = 1, ..., n}. The maximum likelihood learning seeks to
maximize L(θ) = 1

n

∑n
i=1 log pθ(Ii). The gradient of the L(θ) is

L′(θ) =
1

n

n∑
i=1

∂

∂θ
fθ(Ii)− Eθ

[
∂

∂θ
fθ(X)

]
, (12.22)

where Eθ denotes the expectation with respect to pθ(X). The key identity underlying equation (12.22) is
d logZ(θ)/dθ = Eθ[∂fθ(X)/∂θ].

The expectation in equation (12.22) is analytically intractable and has to be approximated by MCMC,
such as the Langevin dynamics, which samples from pθ(X) by iterating the following step:

Iτ+1 = Iτ −
s2

2

[
Iτ
σ2
− ∂

∂X
fθ(Iτ)

]
+ sEτ , (12.23)

where τ indexes the time steps of the Langevin dynamics, s is the step size, and Eτ ∼ N(0, Ip) is the
Gaussian white noise term. A Metropolis-Hastings step can be added to correct for the finiteness of s. The
Langevin dynamics was used by [276] for sampling from the linear form of the descriptive model such as
the FRAME model.

294

We can run ñ parallel chains of Langevin dynamics according to (12.23) to obtain the synthesized
examples {Ii, i = 1, ..., n}. The Monte Carlo approximation to L′(θ) is

L′(θ) ≈ ∂

∂θ

[
1

n

n∑
i=1

fθ(Ii)−
1

n

n∑
i=1

fθ(Ii)

]
, (12.24)

which is the difference between the observed examples and the synthesized examples. We can then update
θ(t+1) = θ(t) + ηtL′(θ(t)), with L′(θ(t)) computed according to (12.24). ηt is the learning rate. The
convergence of this algorithm has been studied by [202, 267].

The learning and sampling algorithm is again an “analysis by synthesis” scheme. The sampling step
runs the Langevin dynamics by computing ∂fθ(X)/∂X , and the learning step updates θ by computing
∂fθ(X)/∂θ. Both derivatives can be computed by back-propagation, and they share the same computations
of ∂h(l)/∂h(l−1).

12.4.4 Introspective learning

This subsection describes the introspective learning method that learns the descriptive model by turning it
into a discriminative model.

Model (12.20) corresponds to a classifier in the following sense [41, 122, 261]. Suppose there are K
categories, pθk(X), for k = 1, ...,K, in addition to the background category p0(X). The ConvNets fθk(X)
for k = 1, ...,K may share common lower layers except the final layer for computing fθk(X). Let ρk be
the prior probability of category k, k = 0, ...,K. Then the posterior probability for classifying an example
X to the category k is a soft-max multi-class classifier, i.e., the multinomial logistic regression:

Pr(k|X) =
exp(fθk(X) + bk)∑K
k=0 exp(fθk(X) + bk)

, (12.25)

where bk = log(ρk/ρ0) − logZ(θk), and for k = 0, fθ0(X) = 0, b0 = 0. Conversely, if we have the
soft-max classifier (12.25), then the distribution of each category is pθk(X) of the form (12.20). Thus the
descriptive model directly corresponds to the commonly used discriminative ConvNet model.

In the case where we only observe unlabeled examples, we may model them by a single distribution
p1(X) = pθ(X) in (12.20), and treat it as the positive distribution, and treat p0(X) as the negative distri-
bution. Let ρ be the prior probability that a random example comes from p1. Then the posterior probability
that a random example X comes from p1 is

Pr(1|X) =
1

1 + exp[−(fθ(X) + b)]
, (12.26)

where b = log(ρ/(1− ρ))− logZ(θ), i.e., a logistic regression.
Generalizing [236], [122] developed an introspective learning method for updating the model by learning

a classifier or logistic regression to distinguish between the observed {Ii} and the synthesized {Ii}, and tilt
the current model according to the logistic regression. It is also an “analysis by synthesis” scheme as well
as an adversarial scheme, except that the analysis is performed by a classifier. Specifically, let pt(X) be
the current model. Each iteration of the introspective learning is as follows. The sampling step generates
synthesized examples {Ii, i = 1, ..., n} from pt(X). The learning step fits a logistic regression to separate
the real examples {Ii, i = 1, ..., n} from the synthesized examples {Ii, i = 1, ..., n} to estimate fθ(X) and
b. Then we let pt+1(X) = exp(fθ(X))pt(X)/Z, where logZ = −b. [122, 236] show that pt converges to
Pdata if the ConvNet is of infinite capacity. See Figure 12.10 for an illustration.

295

Figure 12.10: Introspective learning: The discriminative ConvNet trained on the observed examples versus
the synthesized examples generated by the current model can be used to update the model and to generate
new examples from the updated model.

Numerical experiments in [122] show that the introspective method learns more accurate classifiers than
purely discriminative methods in supervised learning, especially when the size of the training dataset is
small or moderate. Figure 12.12 shows the results.

The introspective learning unifies the discriminative model and the descriptive model. Unlike the gen-
erative adversarial networks (GAN) [83], the learned classifier is capable of introspection itself: it can be
translated into a descriptive model to generate synthesized examples, without relying on a separate genera-
tive model.

12.4.5 Generative models

This subsection describes the hierarchical form of the generative model and the maximum likelihood learn-
ing algorithm.

We can generalize the generative model in the previous sections to a hierarchical form with multiple
layers of hidden variables

h→ h(L) → ...→ h(1) → X, (12.27)

which is a top-down process that transforms h to X . In the linear form of the generative model in the
previous sections, the mapping from h to X is linear. In the hierarchical version, the mapping from h to X
is a ConvNet defined by

h(l−1) = g(l)(W (l)h(l) + b(l)), (12.28)

296

Figure 12.11: Top row: patches of synthesized images in the introspective learning process. Bottom row:
Left is the observed image. Right is the synthesized image generated by the learned model.

Figure 12.12: Introspective learning improves the classification performances, especially if the training
dataset is of small or moderate size.

for l = L + 1, ..., 1, where h(L+1) = h and h(0) = X . g(l) is the non-linear rectification function such as
ReLU that is applied element-wise. Let the resulting ConvNet be X = gα(h), where α = (W (l), b(l), l =
1, 2, ..., L+ 1).

The top-down generative ConvNet was used by [269] to visualize the bottom-up ConvNet learned by
the discriminative model. It was also used by [55] to learn a generative model of images of chairs, where
the learning is supervised in that for each observed image of chair, a latent vector h is provided to specify
the type of chair (represented by a one-hot vector) as well as view point and other geometric properties. The
top-down ConvNet can learn accurate mapping from h to X , and the linear interpolation in the space of h
leads to very realistic non-linear interpolation in the space of X .

The generative model can also be learned in unsupervised setting where h is unknown [83,132,174,197,
201]. The model has the following form :

h ∼ N(0, Id); (12.29)

X = gα(h) + ε; ε ∼ N(0, σ2Ip), (12.30)

where h is the d-dimensional hidden vector of latent factors, gα(h) is a top-down ConvNet that maps the d-
dimensional vector h to the p-dimensional signal X , where d ≤ p. The model (12.30) is a generalization of

297

factor analysis. While independent component analysis, sparse coding etc. generalize the prior distribution
of factor analysis, the model (12.29) and (12.30) maintains the simple prior distribution of factor analysis,
but generalizes the linear mapping in factor analysis to non-linear mapping parametrized by the top-down
ConvNet (12.28). Like the word to vector representation [171], the hidden vector hmay capture semantically
meaningful information in the signal X .

The joint distribution

log qα(h,X) = log [q(h)qα(X|h)] (12.31)

= − 1

2σ2
‖X − gα(h)‖2 − 1

2
‖h‖2 + const. (12.32)

The marginal distribution qα(X) =
∫
qα(h,X)dh. The posterior distribution of the latent factors qα(h|X) =

qα(h,X)/qα(X) ∝ qα(h,X). Here we use the notation qα to denote the generative model in order to dif-
ferentiate it from the descriptive model pθ.

In our recent work [94], we study a maximum likelihood algorithm for learning the generative model
(12.30) without resorting to an assisting network. Specifically, if we observe a training set of examples
{Ii, i = 1, ..., n}, then each Ii has a corresponding latent hi. We can train the generative model by maxi-
mizing the observed-data log-likelihood L(α) = 1

n

∑n
i=1 log qα(Ii).

The gradient of L(α) can be calculated according to the following identity:

∂

∂α
log qα(X) =

1

qα(X)

∫ [
∂

∂α
log qα(h,X)

]
qα(h,X)dh

= Eqα(h|X)

[
∂

∂α
log qα(X|h)

]
. (12.33)

The expectation with respect to qα(h|X) can be approximated by drawing samples from qα(h|X) and then
computing the Monte Carlo average.

The Langevin dynamics for sampling h from pα(h|X) is

hτ+1 = hτ +
s2

2

[
1

σ2
(X − gα(hτ))

∂

∂h
gα(hτ)− hτ

]
+ sEτ , (12.34)

where τ denotes the time step, s is the step size, and Eτ ∼ N(0, Id). Again we can add Metropolis-Hastings
step to correct for the finiteness of s.

We can use stochastic gradient algorithm of [267] for learning, where in each iteration, for each Ii, hi is
sampled from qα(hi|Ii) by running a finite number of steps of Langevin dynamics starting from the current
value of hi. With the sampled {hi}, we can update the parameters α based on the gradient L′(α), whose
Monte Carlo approximation is:

L′(α) ≈ 1

n

n∑
i=1

∂

∂α
log qα(Ii|hi) =

1

n

n∑
i=1

1

σ2
(Ii − gα(hi))

∂

∂α
gα(hi). (12.35)

It is a non-linear regression of Ii on hi. We update α(t+1) = α(t) + ηtL′(α(t)), with L′(α(t)) computed
according to (12.35). ηt is the learning rate. The convergence of this algorithm follows [267].

Alternating back-propagation: The maximum likelihood learning of the generative model (12.30) also
follows the alternative back-propagation scheme. The Langevin dynamics for inference needs to compute
∂gα(h)/∂h. The learning step needs to compute ∂gα(h)/∂α. Both gradients can be computed by back-
propagation and they share the computations of ∂h(l−1)/∂h(l).

298

12.5 Variational, adversarial and cooperative learning

Both the descriptive model and the generative model involve intractable integrals. In the descriptive model,
the normalizing constant is intractable. In the generative model, the marginal distribution of the observed
signal is intractable. Consequently, the maximum likelihood learning algorithms of both models require
MCMC sampling such as Langevin dynamics. To learn the descriptive model, we need to sample the
synthesized examples. To learn the generative model, we need to sample the latent variables. It is possible
to avoid MCMC sampling by variational and adversarial learning. It is also possible to speed up MCMC
sampling by cooperative learning.

12.5.1 Variational auto-encoder

This subsection describes the variational learning of the generative model, where an inference model is
learned to replace the MCMC sampling of the latent variables.

The maximum likelihood learning of the generative model seeks to minimize KL(Pdata(X)||qα(X)),
where qα(X) =

∫
q(h)qα(X|h)dh is the marginal distribution that is intractable. The variational auto-

encoder (VAE) [132, 174, 201] changes the objective to

min
α

min
φ

KL(Pdata(X)ρφ(h|X)||q(h)qα(X|h)), (12.36)

where ρφ(h|X) is an analytically tractable approximation to qα(h|X), and is called the inference model
with parameter φ. Compared to the maximum likelihood objective KL(Pdata(X)||qα(X)), which is the
KL-divergence between the marginal distributions of X , the VAE objective is the KL-divergence between
the joint distributions of (h,X), i.e., Pdata(X)ρφ(h|X) and qα(h,X) = q(h)qα(X|h), which is tractable
because it does not involve the marginal qα(X). The VAE objective is an upper bound of the maximum
likelihood objective

KL(Pdata(X)ρφ(h|X)||qα(h,X)) = KL(Pdata(X)||qα(X)) + KL(ρφ(h|X)||qα(h|X)). (12.37)

The accuracy of the VAE objective as an approximation to the maximum likelihood objective depends on
the accuracy of the inference model ρφ(h|X) as an approximation to the true posterior distribution qα(h|X).

For simplicity, write Pdata(h,X) = Pdata(X)ρφ(h|X), where Pdata here is understood as the distri-
bution of the complete data (h,X), with h imputed by ρφ(h|X), and Q(h,X) = q(h)qα(X|h). The VAE
is

min
α

min
φ

KL(Pdata|Q). (12.38)

We can think of VAE from the perspective of alternating projection. (1) Fix α, find φ by minimizing
KL(Pdata||Q). This is to project the current Q onto the family of Pdata. (2) Fix φ, find α by minimizing
KL(Pdata||Q). This is to project the current Pdata onto the family of Q. Compared to the EM algorithm,
projection (1) corresponds to the E-step to impute the missing data in the form of ρφ(h|X), and projection
(2) corresponds to the M-step to fit the complete model q(h)qα(X|h). The basic idea is illustrated by Figure
12.13.

The problem (12.36) is equivalent to maximizing

EPdata
{Eφ[log qα(h,X)] + entropy(ρφ(h|X))} (12.39)

= EPdata
{Eφ[log qα(X|h)]−KL(ρφ(h|X)||q(h))} (12.40)

299

Figure 12.13: VAE as alternating projection, where the straight lines illustrate the families of Pdata and Q
respectively, and each point is a distribution parametrized by φ or α.

where Eφ denotes the expectation with respect to ρφ(h|X), and EPdata
can be computed by averaging over

the training examples. In (12.39) and (12.40), we have qα(h,X) and qα(X|h), as a result of merging qα(X)
and qα(h|X) in (12.37), and both qα(h,X) and qα(X|h) are computationally tractable. If ρφ(h|X) =
qα(h|X), then maximizing (12.39) with respect to α becomes the EM algorithm.

One popular choice of ρφ(h|X) is N(µφ(X), σ2
φ(X)), where both µφ(X) and σ2

φ(X) can be represented
by bottom-up neural networks with parameter φ.

Figure 12.14: Top Row: training images with landmarks. Bottom Row: synthesized images generated by
the learned AAM model.

In our recent work [96], we show that VAE can replicate the active appearance model (AAM) [35]. Our
experiments were inspired by a recent paper [26] that studied the responses of neurons in specific areas
of monkey’s brain to face images generated by the AAM model. We show that the observed properties of
neurons’ responses can be qualitatively replicated by VAE. The AAM model has an explicit shape represen-
tation in the form of landmarks, where the landmarks follow a shape model learned by principal component
analysis. The faces can be aligned based on the landmarks, and the aligned faces follow an appearance
model learned by another principal component analysis. The learning of the shape and appearance models
require the landmarks in the training data. Figure 12.14 shows examples of face images to train AAM, and
the synthesized face images from the trained AAM.

After learning the AAM model, we generate 20, 000 face images from the learned model. We then learn
a VAE model from these images without the landmarks. Figure 12.15 displays test images generated by the
AAM model, their corresponding reconstructions by the learned VAE model, and the synthesized images
generated by the learned VAE model.

In [26] the authors show that the responses of specific neurons have strong linear relationship with
the shape and appearance variables in the original AAM model, where the responses of some neurons
are highly correlated with the shape variables while the responses of other neurons are highly correlated
with the appearance variables. In fact, one can recover the original face images from the responses of
these neurons, by linearly transforming the neurons’ responses to the shape and appearance variables of the
AAM, and then generating the image by the AAM variables. Apparently the neurons’ responses form a
code of the input face image that captures both the shape and appearance information of the input image.

300

Figure 12.15: Left: test faces generated by AAM. Middle: reconstructed faces by the learned generative
model. Right: synthesized images generated by the learned generative model.

We show that the code learned by VAE, i.e., µφ(X), has very strong linear relationship with the shape and
appearance variables in AAM that generates X . The R2 measure is over 96%. The properties observed by
[26] can be qualitatively reproduced by VAE. Even though the AAM model is highly non-linear due to shape
deformation, the generative model has no difficulty replicating the AAM model without the supervision in
the form of landmarks on the faces.

12.5.2 Adversarial contrastive divergence

This subsection describes the adversarial learning of the descriptive model, where a generative model is
learned to replace the MCMC sampling of the descriptive model.

The maximum likelihood learning of the descriptive model seeks to minimize KL(Pdata(X)||pθ(X)),
where the normalizing constant Z(θ) in pθ is intractable. Recently [129] and [42] proposed to train the
descriptive model pθ and the generative model qα jointly, which amounts to modifying the objective to

min
θ

max
α

[KL(Pdata(X)||pθ(X))−KL(qα(X)||pθ(X))]. (12.41)

By maximizing over α, we make KL(qα(X)||pθ(X)) small, so that the objective function in (12.41) is
a good approximation to KL(Pdata||pθ). Because of the minimax nature of the objective, the learning is
adversarial, where θ and α play a minimax game. See Figure 12.16 for an illustration.

Figure 12.16: Adversarial contrastive divergence. The straight lines illustrate the families of the descriptive
and generative models, and each point is a probability distribution. The generative model seeks to approxi-
mate the descriptive model, while the descriptive model seeks to get close to the data distribution in contrast
to the generative model.

301

The objective (12.41) contrasts interestingly with the objective for variational learning in (12.37). In
the variational objective, we upper bound KL(Pdata||qα) by adding another KL-divergence, so that we
minimize over both α and φ. However, in the adversarial objective (12.41), we lower bound KL(Pdata||pθ)
by subtracting from it another KL-divergence, hence we need to find its saddle point. Thus the sign in front
of the second KL-divergence determines whether it is variational learning or adversarial learning.

The adversarial objective (12.41) is also a form of contrastive divergence, except that the synthesized
examples are provided by the generative model qα directly, instead of being obtained by running a finite-
step MCMC from the observed examples. We may call (12.41) the adversarial contrastive divergence. It is
equivalent to

min
θ

max
α

[EPdata
[Uθ(X)]− Eθ[Uθ(X)] + entropy(qα)] , (12.42)

which is the form proposed by [42]. In this form, the logZ(θ) term is canceled out, so that we do not have
to deal with this intractable term.

However, the entropy term entropy(qα) or the second KL-divergence in (12.41) is not in closed form,
and still needs approximation. We can again use the variational approach to approximate KL(qα(X)||pθ(X))
by

KL(qα(X)||pθ(X)) + KL(qα(h|X)||ρφ(h|X)) = KL(qα(h,X)||pθ(X)ρφ(h|X)), (12.43)

where ρφ(h|X) is again a learned inference model. This leads to the method used by [42]. Again we only
need to deal with the tractable joint model qα(h,X). Thus the learning problem becomes

min
θ

max
α

max
φ

[KL(Pdata(X)||pθ(X))−KL(qα(h,X)||pθ(X)ρφ(h|X))]. (12.44)

There are three networks that need to be learned, including the descriptive model pθ, the generative model
qα, and the inference model ρφ. Write Pdata(h,X) = Pdata(X)ρφ(h|X), Q(h,X) = q(h)qα(X|h), and
P (h,X) = pθ(X)ρ(h|X). The above objective is

min
θ

max
α

max
φ

[KL(Pdata||P)−KL(Q||P)]. (12.45)

Compared to the variational learning in (12.37), ρφ(h|X) appears on the left side of KL-divergence
in (12.37), but it appears on the right side of KL-divergence in (12.44). The learning of ρφ(h|X) is from
the synthesized data generated by qα(h,X) instead of real data. This is similar to the sleep phase of the
wake-sleep algorithm [102].

We train the three nets on the down-sampled 32x32 imageNet [47] (roughly 1 million images). For the
generative model, starting from the latent vector h of 100 dimensions, we use 5 layers of kernels of stride
2, where the sizes of kernels of the first 4 layers are 4× 4, and the size of the kernels of the bottom layer is
3×3. The numbers of channels at these layers are 512, 512, 256, 128, 3 respectively. Each layer is followed
by batch normalization and ReLU non-linearity, except the last layer where tanh is used. For the inference
model, we use the mirror structure as the generative model. We build the last layer separately to model the
posterior mean and variance. For the descriptive model, we use the same structure as the inference net.

Figures 12.17 display the learning results, where the left panel shows randomly selected training exam-
ples and the right panel shows the random examples generated by the learned generative model.

12.5.3 Integrating variational and adversarial learning by divergence triangle

We can integrate or unify the variational and adversarial learning methods.

302

Figure 12.17: Learning the models from the ImageNet dataset. Left: random samples of training examples.
Right: synthesized examples generated by the learned generative model.

Following the notation of previous subsections, write Pdata(h,X) = Pdata(X)ρφ(h|X), P (h,X) =
pθ(X)ρφ(h|X), and Q(h,X) = q(h)qα(X|h). It has been noticed by the recent work [95] that the varia-
tional objective KL(Pdata||Q) and the adversarial objective KL(Pdata||P) − KL(Q||P) can be combined
into

max
θ

min
α

min
φ

[KL(Pdata||Q) + KL(Q||P)−KL(Pdata||P)], (12.46)

which is in the form of a divergence triangle formed by Pdata, P , and Q. One can learn the descriptive
model, the generative model, and the inference model jointly using the above objective.

Figure 12.18: Learning the models from CelebA dataset. From left to right: original images, reconstructed
images, and generated images.

Figure 12.18 displays an example in [95] where the models are learned from the CelebA dataset. The
left panel shows some random training examples, the middle panel shows the corresponding reconstructed
examples by the learned inference model, and the right panel shows some examples generated by the learned
generative model.

We recruit a layer-wise training scheme to learn models on CelebA-HQ [126] with resolutions of up to
1, 024 × 1, 024 pixels. As in [126], the training starts with down-sampled images with a spatial resolution

303

Figure 12.19: Generated samples with 1, 024 × 1, 024 resolution drawn from gθ(z) with 512-dimensional
latent vector z ∼ N(0, Id) for CelebA-HQ.

Figure 12.20: High-resolution synthesis from the generator model gθ(z) with linear interpolation in latent
space (i.e., (1− α) · z0 + α · z1) for CelebA-HQ.

304

of 4 × 4 while progressively increasing the size of the images and number of layers. All three models are
grown in synchrony where 1× 1 convolutions project between RGB and feature.

Figure 12.19 depicts high-fidelity synthesis in a resolution of 1, 024 × 1, 024 pixels sampled from the
generator model gθ(z) on CelebA-HQ. Figure 12.20 illustrates linear interpolation in latent space (i.e.,
(1− α) · z0 + α · z1), which indicates diversity in the samples.

Therefore, the joint learning in the triangle formulation is not only able to train the three models with
stable optimization, but it also achieves synthesis with high fidelity.

12.5.4 Cooperative learning

This subsection describes the cooperative training of the descriptive and generative models which jumpstart
each other’s MCMC sampling.

We can learn the descriptive model and the generative model separately, and we have been able to
scale up the learning to big datasets. However, the separate learning algorithms can still be slow due to
MCMC sampling. Recently we discover that we can speed up the learning of the two models by coupling
the two maximum likelihood learning algorithms into a cooperative algorithm that we call the CoopNets
algorithm [259]. It is based on the following two key observations. (1) The generative model can generate
examples directly, so we can use it as an approximate sampler of the descriptive model. (2) The generative
model can be learned more easily if the latent factors are known, which is the case with the synthesized
examples.

Generative model as a sampler. The generative model can serve as an approximate sampler of the
descriptive model. To sample from the descriptive model, we can initialize the synthesized examples by
generating examples from the generative model. We first generate ĥi ∼ N(0, Id), and then generate X̂i =
g(ĥi;α) + εi, for i = 1, ..., ñ. If the current generative model qα is close to the current descriptive model
pθ, then the generated {X̂i} should be a good initialization for sampling from the descriptive model, i.e.,
starting from the {X̂i, i = 1, ..., ñ}, we run Langevin dynamics for l steps to get {X̃i, i = 1, ..., ñ}, which
are revised versions of {X̂i}. These {X̃i} can be used as the synthesized examples from the descriptive
model. We can then update θ in the same way as we learn the descriptive model.

MCMC teaching. The descriptive model can teach the generative model via MCMC. In order to update
α of the generative model, we treat the {X̃i, i = 1, ..., ñ} produced by the above procedure as the training
data for the generative model. Since these {X̃i} are obtained by the Langevin dynamics initialized from the
{X̂i, i = 1, ..., ñ}, which are generated by the generative model with known latent factors {ĥi, i = 1, ..., ñ},
we can update α by learning from {(ĥi, X̃i), i = 1, ..., ñ}, which is a supervised learning problem, or more
specifically, a non-linear regression of X̃i on ĥi. At α(t), the latent factors ĥi generates and thus reconstructs
the initial example X̂i. After updating α, we want ĥi to reconstruct the revised example X̃i. That is, we
revise α to absorb the MCMC transition from X̂i to X̃i for sampling the descriptive model, so that the
generative model shifts its density from {X̂i} to {X̃i}. The left diagram in (12.47) illustrates the basic idea.

ĥi

X̂i X̃i

α(t) α(t+1)

θ(t)

ĥi h̃i

X̂i X̃i

α(t)

α(t) α(t+1)

θ(t)
(12.47)

In the two diagrams in (12.47), the double-line arrows indicate generation and reconstruction by the genera-
tive model, while the dashed-line arrows indicate Langevin dynamics for MCMC sampling and inference in

305

the two models. The diagram on the right in (12.47) illustrates a more rigorous method, where we initialize
the Langevin inference of {hi, i = 1, ..., ñ} from {ĥi}, and then update α based on {(h̃i, X̃i), i = 1, ..., ñ}.
The diagram on the right shows how the two models jumpstart each other’s MCMC.

The learning of the descriptive model is based on the modified contrastive divergence,

KL(Pdata‖pθ)−KL(Mθqα‖pθ), (12.48)

where qα provides the initialization of the finite-step MCMC, whose transition kernel is denoted Mθ, and
Mθqα denotes the marginal distribution obtained after running Mθ from qα. The learning of the generative
model is based on how Mθqα modifies qα, and is accomplished by minqα KL(Mθqαt‖qα). In the idealized
case of infinite capacity of qα so that the KL-divergence can be minimized to zero, the learned qα will satisfy
qα = Mθqα, i.e., qα is the stationary distribution of Mθ. But the stationary distribution of Mθ is nothing but
pθ. Thus the learned qα will be the same as qθ. Then the second KL-divergence in (12.48) will become zero,
and the learning of the descriptive model is to minimize KL(Pdata‖pθ), which is maximum likelihood.

Figure 12.21: Cooperative learning. The training set consists of 11,000 images (64× 64) randomly sampled
from 10 Imagenet scene categories. Left panel: random samples of training images. Right panel: random
samples generated by the learned models.

We conduct experiments on learning from Imagenet dataset [47]. We adopt a 4-layer descriptive model
and a 5-layer generative model. We set the number of Langevin dynamics steps in each learning iteration to
l = 10. The number of learning iterations is 1, 000. After learning the models, we synthesize images using
the learned models.

In our first experiment, we learn from images that are randomly sampled from 10 Imagenet scene cat-
egories. The number of images sampled from each category is 1100. We mix the images from all the
categories as a single training set. Figure 12.21 displays the observed examples randomly sampled from the
training set, and the synthesized examples generated by the CoopNets algorithm.

Figure 12.22 shows 4 examples of interpolating between latent vectors h. For each row, the images at
the two ends are generated from h vectors randomly sampled from N(0, Id). Each image in the middle is
obtained by first interpolating the h vectors of the two end images, and then generating the image using the
learned models. This experiment shows that we learn smooth generative model that traces the manifold of
the data distribution.

306

Figure 12.22: Interpolation between latent vectors of the images on the two ends.

We evaluate the synthesis quality by the Inception score [212]. Our method is competitive to DCGAN
[197], EBGAN [270], Wasserstein GAN [6], InfoGAN [29], VAE [132], the method of [129].

Compared to the three nets in [42], the cooperative learning method only needs two nets. Moreover, the
finite-step MCMC serves to bridge the generative model and the descriptive model, so that the synthesized
examples are closer to fair samples from the descriptive model.

12.5.5 Conditional learning via fast thinking initializer and slow thinking solver

Recently, [262] extended the cooperative learning scheme to the conditional learning problem by jointly
learning a conditional energy-based model and a conditional generator model. The conditional energy-based
model is of the following form

πα(x|c) =
1

Z(c, α)
exp[fα(x, c)], (12.49)

where x is the input signal and c is the condition. Z(c, α) is the normalizing constant conditioned on c.
fα(x, c) can be defined by a bottom-up ConvNet where α collects all the weight and bias parameters. Fixing
the condition c, fα(x, c) defines the value of x for the condition c, and −fα(x, c) defines the conditional
energy function. πα(x|c) is also a deep generalization of conditional random fields. Both the conditional
generator model and the conditional energy-based model can be learned jointly by the cooperative learning
scheme.

Figure 12.23 shows some examples of learning the conditional distribution of an image given a class
label. The two models are jointly learned on 30,000 handwritten digit images from the MNIST database
conditioned on their class labels, which are encoded as one-hot vectors. For each class, 10 randomly sampled
images are displayed. Each column is conditioned on one label and each row is a different generated sample.

Figure 12.24 shows some examples of pattern completion on the CMP (Center for Machine Perception)
Facades data set [240] by learning a mapping from an occluded image (256× 256 pixels), where a mask of
the size of 128× 128 pixels is centrally placed onto the original version, to the original image. In this case,
c is the observed part of the signal, and x is the unobserved part of the signal.

The cooperative learning of the conditional generator model and conditional energy-based model can
be interpreted as follows. The conditional energy function defines the objective function or value function,
i.e., it defines what solutions are desirable given the condition or the problem. The solutions can then be
obtained by an iterative optimization or sampling algorithm such as MCMC. In other words, the conditional
energy-based model leads to a solver in the form of an iterative algorithm, and this iterative algorithm is a
slow thinking process. In contrast, the conditional generator model defines a direct mapping from condition
or problem to solutions, and it is a fast thinking process. We can use the fast thinking generator as an
initializer to generate the initial solution, and then use the slow thinking solver to refine the fast thinking
initialization by the iterative algorithm. The cooperative learning scheme enables us to learn both the fast
thinking initializer and slow thinking solver. Unlike conditional GAN, the cooperative learning scheme has
a slow thinking refining process, which can be important if the fast thinking initializer is not optimal.

307

Figure 12.23: Generated handwritten digits conditioned on class labels. Each column is conditioned on one class
label, and each row represents a different generated handwritten digit image. The synthesized images are generated
by the jointly trained initializer and solver from 30,000 handwritten digit images along with their class labels from the
MNIST database. The image size is 64 × 64 pixels. Abbreviation: MNIST, Modified National Institute of Standards
and Technology.

In terms of inverse reinforcement learning, the conditional energy-based model defines the reward or
value function, and the iterative solver defines an optimal control or planning algorithm. The conditional
generator model defines a policy. The fast thinking policy is about habitual, reflexive, or impulsive behav-
iors, while the slow thinking solver is about deliberation and planning. Compared with the policy, the value
is usually simpler and more generalizable, because it is in general easier to specify what one wants than to
specify how to produce what one wants.

12.6 Divergence triangle

12.7 Flow-based model and flow contrastive estimation

12.8 Discussion

To summarize the relationships between the non-hierarchical linear forms and the hierarchical non-linear
forms of the three families of models, the non-hierarchical form has one layer of features or hidden variables,
and they are designed. The hierarchical form has multiple layers of features or hidden variables, and all the
layers are learned from the data.

To summarize the relationships between the three families of models, we have the following connections:

1. The discriminative model and the descriptive model can be translated into each other by the Bayes
rule. The introspective learning method unifies the two models.

2. The descriptive model and the generative model can be learned together by adversarial contrastive
divergence or the cooperative learning method via MCMC teaching.

3. The discriminative model and the generative model can be learned together by adversarial training.

See Figure 12.25 for an illustration.
Besides the models reviewed in this paper, there are other probabilistic models, such as the deep Boltz-

mann machine [103,147,211], which is an energy-based model with multiple layers of latent variables, auto-
regressive models [189], the deep generalizations of the independent component analysis model [51, 52].

308

input ground truth initializer solver conditional GAN

Figure 12.24: Pattern completion by conditional learning. Each row displays one example. The first image is the
testing image (256 × 256 pixels) with a hole of 128 × 128 that needs to be recovered, the second image shows
the ground truth, the third image shows the result recovered by the initializer (i.e., conditional generator model), the
fourth image shows the result recovered by the solver (i.e., the MCMC sampler of the conditional energy-based model,
initialized from the result of the initializer), and the last image shows the result recovered by the conditional GAN as
a comparison.

In the cooperative learning, the descriptive model and the generative model are parametrized by separate
networks. It is more desirable to integrate the two classes of models within a common network.

The existing models are still quite far from what Grenander might have searched for, in that they are
still more or less black box models with ConvNet parametrizations. A more interpretable model is the
And-Or graph [277], which alternates between layers of And nodes and Or nodes. An And node models
the composition of parts, while an Or node models the alternative choices of parts according to a certain
probability distribution. Such an And-Or grammar can generalize to unseen patterns by reconfiguration of
parts. In fact the neural network can be interpreted as a dense version of And-Or graph in that the linear
weighted sum can be interpreted as And nodes and the rectification and max pooling can be interpreted as
Or nodes. Figure 12.26 shows an example of And-Or template of animal faces [218].

Ideally, as illustrated by Figure 12.27, we should have simple descriptive and generative models at the
lowest layers, with the descriptive models accounting for high dimensional or high entropy patterns such as
stochastic textures, and the generative models accounting for low-dimensional or low entropy patterns such
as textons. In the middle layers we should have stochastic grammars to define the explicit compositional
patterns of objects and their parts, as well as their relations [80,277]. At the top layer, we should have logical
reasoning based on the learned common sense about physics, funtionality and causality. It is our hope that a
unified model of this form can be developed in the future.

309

Figure 12.25: The connections between the three families of models. The discriminative and the generative
models are connected by the generative adversarial networks (GAN). The discriminative and the descriptive
models are connected by the introspective neural networks (INN). The descriptive and the generative models
are connected by cooperative learning.

Figure 12.26: And-Or template for modeling recursive compositions of alternative parts: Each And node
(blue circle) is a composition of some Or nodes. Each Or node (blank circle) is a probability distribution
over some And nodes. An And node models the composition of parts. An Or node models the alternative
choices of each part.

12.9 Model and algorithm

12.9.1 Model

Let x ∈ RD be an observed example such as an image or a piece of text, and let z ∈ Rd be the latent
variables, where D � d. The joint distribution of (x, z) is

pθ(x, z) = pα(z)pβ(x|z), (12.50)

310

Figure 12.27: Hierarchical representation of patterns, with simple generative and descriptive models for
textons and textures at the lower layers, the stochastic grammar in the middle layers, and logic reasoning
with common sense at higher layers.

where pα(z) is the prior model with parameters α, pβ(x|z) is the top-down generation model with parame-
ters β, and θ = (α, β).

The prior model pα(z) is formulated as an energy-based model,

pα(z) =
1

Z(α)
exp(fα(z))p0(z). (12.51)

where p0(z) is a reference distribution, assumed to be isotropic Gaussian in this paper. fα(z) is the
negative energy and is parameterized by a small multi-layer perceptron with parameters α. Z(α) =∫

exp(fα(z))p0(z)dz = Ep0 [exp(fα(z))] is the normalizing constant or partition function.
The prior model (12.51) can be interpreted as an energy-based correction or exponential tilting of the

original prior distribution p0, which is the prior distribution in the generator model in VAE.
The generation model is the same as the top-down network in VAE. For image modeling,

x = gβ(z) + ε, (12.52)

where ε ∼ N(0, σ2ID), so that pβ(x|z) ∼ N(gβ(z), σ2ID). As in VAE, σ2 takes an assumed value. For text
modeling, let x = (x(t), t = 1, ..., T) where each x(t) is a token. Following previous text VAE model [?],
we define pβ(x|z) as a conditional autoregressive model,

pβ(x|z) =
T∏
t=1

pβ(x(t)|x(1), ..., x(t−1), z) (12.53)

which is often parameterized by a recurrent network with parameters β.
In the original generator model, the top-down network gβ maps the unimodal prior distribution p0 to be

close to the usually highly multi-modal data distribution. The prior model in (12.51) refines p0 so that gβ
maps the prior model pα to be closer to the data distribution. The prior model pα does not need to be highly
multi-modal because of the expressiveness of gβ .

311

The marginal distribution is pθ(x) =
∫
pθ(x, z)dz =

∫
pα(z)pβ(x|z)dz. The posterior distribution is

pθ(z|x) = pθ(x, z)/pθ(x) = pα(z)pβ(x|z)/pθ(x).

In the above model, we exponentially tilt p0(z). We can also exponentially tilt p0(x, z) = p0(z)pβ(x|z)
to pθ(x, z) = 1

Z(θ) exp(fα(x, z))p0(x, z). Equivalently, we may also exponentially tilt p0(z, ε) = p0(z)p(ε),
as the mapping from (z, ε) to (z, x) is a change of variable. This leads to an EBM in both the latent space
and data space, which makes learning and sampling more complex. Therefore, we choose to only tilt p0(z)
and leave pβ(x|z) as a directed top-down generation model.

12.9.2 Maximum likelihood

Suppose we observe training examples (xi, i = 1, ..., n). The log-likelihood function is

L(θ) =

n∑
i=1

log pθ(xi). (12.54)

The learning gradient can be calculated according to

∇θ log pθ(x) = Epθ(z|x) [∇θ log pθ(x, z)] = Epθ(z|x) [∇θ(log pα(z) + log pβ(x|z))] . (12.55)

See Appendix ?? and ?? for a detailed derivation.
For the prior model, ∇α log pα(z) = ∇αfα(z) − Epα(z)[∇αfα(z)]. Thus the learning gradient for an

example x is

δα(x) = ∇α log pθ(x) = Epθ(z|x)[∇αfα(z)]− Epα(z)[∇αfα(z)]. (12.56)

The above equation has an empirical Bayes nature. pθ(z|x) is based on the empirical observation x, while
pα is the prior model. α is updated based on the difference between z inferred from empirical observation
x, and z sampled from the current prior.

For the generation model,

δβ(x) = ∇β log pθ(x) = Epθ(z|x)[∇β log pβ(x|z)], (12.57)

where log pβ(x|z) = −‖x − gβ(z)‖2/(2σ2) + constant or
∑T

t=1 log pβ(x(t)|x(1), ..., x(t−1), z) for image
and text modeling respectively, which is about the reconstruction error.

Expectations in (12.56) and (12.57) require MCMC sampling of the prior model pα(z) and the posterior
distribution pθ(z|x). We can use Langevin dynamics [?, ?]. For a target distribution π(z), the dynamics
iterates

zk+1 = zk + s∇z log π(zk) +
√

2sεk, (12.58)

where k indexes the time step of the Langevin dynamics, s is a small step size, and εk ∼ N(0, Id) is the
Gaussian white noise. π(z) can be either pα(z) or pθ(z|x). In either case, ∇z log π(z) can be efficiently
computed by back-propagation.

It is worth noting that VAE is not conveniently applicable here. Even if we have a tractable approxi-
mation to pθ(z|x) in the form of an inference network, we still need to compute Epα(z)[∇αfα(z)], which
requires MCMC.

312

12.9.3 Short-run MCMC

Convergence of Langevin dynamics to the target distribution requires infinite steps with infinitesimal step
size, which is impractical. We thus propose to use short-run MCMC [?, ?, 183] for approximate sampling.
This is in agreement with the philosophy of variational inference, which accepts the intractability of the
target distribution and seeks to approximate it by a simpler distribution. The difference is that we adopt
short-run Langevin dynamics instead of learning a separate network for approximation.

The short-run Langevin dynamics is always initialized from the fixed initial distribution p0, and only
runs a fixed number of K steps, e.g., K = 20,

z0 ∼ p0(z), zk+1 = zk + s∇z log π(zk) +
√

2sεk, k = 1, ...,K. (12.59)

Denote the distribution of zK to be π̃(z). Because of fixed p0(z) and fixedK and s, the distribution π̃ is well
defined. In this paper, we put ˜ sign on top of the symbols to denote distributions or quantities produced by
short-run MCMC, and for simplicity, we omit the dependence on K and s in notation. As shown in [38],
the Kullback-Leibler divergence DKL(π̃‖π) decreases to zero monotonically as K →∞.

Specifically, denote the distribution of zK to be p̃α(z) if the target π(z) = pα(z), and denote the
distribution of zK to be p̃θ(z|x) if π(z) = pθ(z|x). We can then replace pα(z) by p̃α(z) and replace pθ(z|x)
by p̃θ(z|x) in equations (12.56) and (12.57), so that the learning gradients in equations (12.56) and (12.57)
are modified to

δ̃α(x) = Ep̃θ(z|x)[∇αfα(z)]− Ep̃α(z)[∇αfα(z)], (12.60)

δ̃β(x) = Ep̃θ(z|x)[∇β log pβ(x|z)]. (12.61)

We then update α and β based on (12.60) and (12.61), where the expectations can be approximated by
Monte Carlo samples.

The short-run MCMC sampling is always initialized from the same initial distribution p0(z), and always
runs a fixed number of K steps. This is the case for both training and testing stages, which share the same
short-run MCMC sampling.

12.9.4 Algorithm

The learning and sampling algorithm is described in Algorithm 8.
input : Learning iterations T , learning rate for prior model η0, learning rate for generation

model η1, initial parameters θ0 = (α0, β0), observed examples {xi}ni=1, batch size m,
number of prior and posterior sampling steps {K0,K1}, and prior and posterior sampling
step sizes {s0, s1}.

output: θT = (αT , βT).
for t = 0 : T − 1 do

1. Mini-batch: Sample observed examples {xi}mi=1.
2. Prior sampling: For each xi, sample z−i ∼ p̃αt(z) using equation (12.59), where the target
distribution π(z) = pαt(z), and s = s0, K = K0.

3. Posterior sampling: For each xi, sample z+
i ∼ p̃θt(z|xi) using equation (12.59), where the

target distribution π(z) = pθt(z|xi), and s = s1, K = K1.
4. Learning prior model: αt+1 = αt + η0

1
m

∑m
i=1[∇αfαt(z+

i)−∇αfαt(z−i)].
5. Learning generation model: βt+1 = βt + η1

1
m

∑m
i=1∇β log pβt(xi|z+

i).
end

Algorithm 8: Learning latent space EBM prior via short-run MCMC.

313

The prior sampling and posterior sampling correspond to the positive phase and negative phase of la-
tent EBM [?]. Learning prior model and learning generation model are based on mini-batch Monte Carlo
approximations to (12.60) and (12.61) respectively.

12.9.5 Theoretical understanding

The learning algorithm based on short-run MCMC sampling in Algorithm 8 is a modification or perturbation
of maximum likelihood learning, where we replace pα(z) and pθ(z|x) by p̃α(z) and p̃θ(z|x) respectively.
For theoretical underpinning, we should also understand this perturbation in terms of objective function and
estimating equation.

In terms of objective function, define the Kullback-Leibler divergenceDKL(p(x)‖q(x)) = Ep[log(p(x)/q(x)].
At iteration t, with fixed θt = (αt, βt), consider the following perturbation of the log-likelihood function of
θ for an observation x,

log p̃θ(x) = log pθ(x)−DKL(p̃θt(z|x)‖pθ(z|x)) +DKL(p̃αt(z)‖pα(z)). (12.62)

The above is a function of θ, while θt is fixed. Then

δ̃α(x) = ∇α log p̃θ(x), δ̃β(x) = ∇β log p̃θ(x), (12.63)

where the derivative is taken at θt. See Appendix ?? for details. Thus the updating rule of Algorithm 8
follows the stochastic gradient (i.e., Monte Carlo approximation of the gradient) of a perturbation of the log-
likelihood (p̃θ(x) above is not necessarily a normalized density function any more). Equivalently, because
θt is fixed, we can drop the entropies of p̃θt(z|x) and p̃αt(z) in the above Kullback-Leibler divergences,
hence the updating rule follows the stochastic gradient of

Q(θ) = L(θ) +
n∑
i=1

[
Ep̃θt (zi|xi)[log pθ(zi|xi)]− Ep̃αt (z)[log pα(z)]

]
, (12.64)

where L(θ) is the total log-likelihood defined in equation (12.54), and the gradient is taken at θt.
In equation (12.62), the first DKL term is related to variational inference, although we do not learn

a separate inference model. The second DKL term is related to contrastive divergence [233], except that
p̃αt(z) is initialized from p0(z). It serves to cancel the intractable logZ(α) term.

In terms of estimating equation, the stochastic gradient descent in Algorithm 8 is a Robbins-Monro
stochastic approximation algorithm [202] that solves the following estimating equation:

1

n

n∑
i=1

δ̃α(xi) =
1

n

n∑
i=1

Ep̃θ(zi|xi)[∇αfα(zi)]− Ep̃α(z)[∇αfα(z)] = 0, (12.65)

1

n

n∑
i=1

δ̃β(xi) =
1

n

n∑
i=1

Ep̃θ(zi|xi)[∇β log pβ(xi|zi)] = 0. (12.66)

The solution to the above estimating equation defines an estimator of the parameters. Algorithm 8 converges
to this estimator under the usual regularity conditions of Robbins-Monro [202]. If we replace p̃α(z) by
pα(z), and p̃θ(z|x) by pθ(z|x), then the above estimating equation is the maximum likelihood estimating
equation.

The above theoretical understanding in terms of objective function and estimating equation is more
general than that of maximum likelihood, which is a special case where the number of steps K → ∞ and

314

the step size s → 0 in the Langevin dynamics in equation (12.59). Our theoretical understanding is clearly
more relevant in practice where we can only afford finite K with non-zero s.

As to the step size s, we currently treat it as a tuning parameter. s can be more formally optimized by
maximizing Q in equation (12.64) or maximizing the average of log p̃θ(xi) defined by equation (12.62). We
may also allow different step sizes for different steps k in the short-run Langevin dynamics. We leave this
issue to future investigations.

315

13

Discussion

317

Bibliography

[1] Edward H. Adelson. Layered representations for vision and video. In In Representation of Visual
Scenes,Proceedings IEEE Workshop on International Conference on Computer Vision (ICCV), pages
3–9, 1995.

[2] N. Ahuja and M. Tuceryan. Extraction of early perceptual structure in dot patterns. CVGIP, 48, 1989.

[3] Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the data-generating
distribution. The Journal of Machine Learning Research, 15(1):3563–3593, 2014.

[4] Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191. American
Mathematical Soc., 2007.

[5] Daniel J. Amit. Modeling brain function: The world of attractor neural networks. Modeling Brain
Function, 1989.

[6] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

[7] A. Barbu and Song-Chun Zhu. Incorporating visual knowledge representation in stereo reconstruc-
tion. In Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, volume 1,
pages 572–579 Vol. 1, 2005.

[8] Adrian Barbu and Song-Chun Zhu. Generalizing swendsen-wang to sampling arbitrary posterior
probabilities. IEEE Transaction on Pattern Analysis and Machine Intelligence, 27(8):1239–1253,
2005.

[9] Horace B Barlow. Possible principles underlying the transformations of sensory messages. 1961.

[10] Harry G Barrow and Jay M. Tenenbaum. Retrospective on “interpreting line drawings as three-
dimensional surfaces”. Artificial Intelligence, 59(1-2):71–80, 1993.

[11] Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Jörn-Henrik Jacobsen. In-
vertible residual networks. In Proceedings of the 36th International Conference on Machine Learn-
ing, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pages 573–582, 2019.

[12] Peter N Belhumeur. A bayesian approach to binocular steropsis. International Journal of Computer
Vision, 19(3):237–260, 1996.

[13] A. J. Bell and T. J. Sejnowski. The independent components of natural images are edge filters. Vision
Research, 37:3327–3338, 1997.

319

[14] Anthony J Bell and Terrence J Sejnowski. The independent components of natural scenes are edge
filters. Vision Research, 37(23):3327–3338, 1997.

[15] Yoshua Bengio, Ian J. Goodfellow, and Aaron Courville. Deep learning. Book in preparation for MIT
Press, 2015.

[16] J. Bergen and E. Adelson. Early vision and texture perception. Nature, 333:363–364, 1988.

[17] James R Bergen and EH Adelson. Theories of visual texture perception. Spatial vision, 10:114–134,
1991.

[18] Julian Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal
Statistical Society. Series B (Methodological), pages 192–236, 1974.

[19] J. S. De Bonet and P. Viola. A non-parametric multi-scale statistical model for natural images. Ad-
vances in Nueral Information Processing, 10, 1997.

[20] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and regres-
sion trees. CRC press, 1984.

[21] Hilton Bristow, Anders Eriksson, and Simon Lucey. Fast convolutional sparse coding. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 391–398. IEEE, 2013.

[22] Michael J Brooks and Berthold KP Horn. Shape and source from shading. 1985.

[23] Yue Cao, Bin Liu, Mingsheng Long, and Jianmin Wang. Hashgan: Deep learning to hash with pair
conditional wasserstein gan. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[24] D. Chandler. Introduction to Modern Statistical Mechanics. Oxford University Press, 1987.

[25] David Chandler. Introduction to modern statistical mechanics. Introduction to Modern Statistical
Mechanics, by David Chandler, pp. 288. Foreword by David Chandler. Oxford University Press, Sep
1987. ISBN-10: 0195042778. ISBN-13: 9780195042771, 1, 1987.

[26] Le Chang and Doris Y Tsao. The code for facial identity in the primate brain. Cell, 169(6):1013–
1028, 2017.

[27] S. Chen, D. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on
Scientific Computing, 20(1):33–61, 1999.

[28] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decomposition by basis
pursuit. SIAM Journal on Scientific Computing, 20(1):33–61, 1998.

[29] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In Ad-
vances in Neural Information Processing Systems, pages 2172–2180, 2016.

[30] Sung Nok Chiu, Dietrich Stoyan, Wilfrid S Kendall, and Joseph Mecke. Stochastic geometry and its
applications. John Wiley & Sons, 2013.

[31] LI Chongxuan, Taufik Xu, Jun Zhu, and Bo Zhang. Triple generative adversarial nets. In Advances
in neural information processing systems, pages 4088–4098, 2017.

320

[32] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The loss
surface of multilayer networks. arXiv preprint arXiv:1412.0233, 2014.

[33] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pages 215–223, 2011.

[34] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23(6):681–685, 2001.

[35] Timothy F Cootes, Gareth J Edwards, and Christopher J Taylor. Active appearance models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23(6):681–685, 2001.

[36] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

[37] Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

[38] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons, 2012.

[39] George R Cross and Anil K Jain. Markov random field texture models. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, (1):25–39, 1983.

[40] Leonardo Da Vinci, Martin Kemp, and Margaret Walker. Leonardo on painting: anthology of writings
by Leonardo da Vinci, with a selection of documents relating to his career as an artist. Yale Nota
Bene, 1989.

[41] Jifeng Dai, Yang Lu, and Ying Nian Wu. Generative modeling of convolutional neural networks. In
International Conference on Learning Representations, 2014.

[42] Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, and Aaron Courville. Calibrating
energy-based generative adversarial networks. In International Conference on Learning Representa-
tions, 2017.

[43] John G Daugman. Uncertainty relation for resolution in space, spatial frequency, and orientation
optimized by two-dimensional visual cortical filters. JOSA A, 2(7):1160–1169, 1985.

[44] Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of random fields.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393, 1997.

[45] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society series B, 39:1–38, 1977.

[46] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society. Series B (methodological), pages 1–38,
1977.

[47] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255. IEEE, 2009.

[48] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a lapla-
cian pyramid of adversarial networks. In NIPS, pages 1486–1494, 2015.

321

[49] Persi Diaconis and David Freedman. On the statistics of vision: the julesz conjecture. Journal of
Mathematical Psychology, 24(2):112–138, 1981.

[50] Sven Dickinson and Zygmunt Pizlo. Shape perception in human and computer vision. Springer,
2015.

[51] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

[52] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In
International Conference on Learning Representations, volume abs/1605.08803, 2017.

[53] Gianluca Donato and Serge Belongie. Approximate thin plate spline mappings. In European confer-
ence on computer vision, pages 21–31. Springer, 2002.

[54] David Leigh Donoho. Sparse components of images and optimal atomic decompositions. Construc-
tive Approximation, 17(3):353–382, 2001.

[55] Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Learning to generate chairs with
convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1538–1546, 2015.

[56] Gareth J Edwards, Christopher J Taylor, and Timothy F Cootes. Learning to identify and track faces
in image sequences. In Proceedings Third IEEE International Conference on Automatic Face and
Gesture Recognition, pages 260–265. IEEE, 1998.

[57] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image using a
multi-scale deep network. In Advances in neural information processing systems, pages 2366–2374,
2014.

[58] M Elad, M Aharon, and AM Bruckstein. The k-svd: An algorithm for designing of overcomplete
dictionaries for sparse representations. IEEE Transactions On Signal Processing, 15(12):3736–3745,
2006.

[59] Michael Elad. Sparse and redundant representations: from theory to applications in signal and image
processing. Springer Science & Business Media, 2010.

[60] James H. Elder, Amnon Krupnik, and Leigh A. Johnston. Contour grouping with prior models. IEEE
Transaction on Pattern Analysis and Machine Intelligence, 25(6):661–674, 2003.

[61] Selim Esedoglu and Riccardo March. Segmentation with depth butwithout detecting junctions. Jour-
nal of Mathematical Imaging and Vision, 18(1):7–15, 2003.

[62] David J Field. Relations between the statistics of natural images and the response properties of
cortical cells. JOSA A, 4(12):2379–2394, 1987.

[63] Chris Fraley and Adrian E Raftery. Model-based clustering, discriminant analysis, and density esti-
mation. Journal of the American statistical Association, 97(458):611–631, 2002.

[64] Robert T. Frankot and Rama Chellappa. A method for enforcing integrability in shape from shading
algorithms. IEEE Transactions on pattern analysis and machine intelligence, 10(4):439–451, 1988.

322

[65] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

[66] B. Frey and N. Jojic. Transformed component analysis: joint estimation of spatial transforms and
image components. In Greece Corfu, editor, Proc. of 7th ICCV, 1999.

[67] A. Fridman. Mixed Markov Models. PhD thesis, Division of Applied Math, Brown University, 2000.

[68] Artur Fridman. Mixed markov field, 2000.

[69] Artur Fridman. Mixed markov models, applied mathematics. Proceedings of the National Academy
of Sciences, 100(14):8092–8096, 2003.

[70] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic regression: a statistical
view of boosting (with discussion and a rejoinder by the authors). The annals of statistics, 28(2):337–
407, 2000.

[71] Jerome H Friedman. Exploratory projection pursuit. Journal of the American Statistical Association,
82(397):249–266, 1987.

[72] Jerome H Friedman. Multivariate adaptive regression splines. The Annals of Statistics, pages 1–67,
1991.

[73] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statis-
tics, 29(5):1189–1232, 2001.

[74] King-Sun Fu and Bharat K Bhargava. Tree systems for syntactic pattern recognition. Computers,
IEEE Transactions on, 100(12):1087–1099, 1973.

[75] Ruiqi Gao, Yang Lu, Junpei Zhou, Song-Chun Zhu, and Ying Nian Wu. Learning multi-grid genera-
tive convnets by minimal contrastive divergence. arXiv preprint arXiv:1709.08868, 2017.

[76] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti
dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.

[77] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pages 3354–3361. IEEE, 2012.

[78] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian restora-
tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(4):380–393,
1997.

[79] Stuart Geman and Christine Graffigne. Markov random field image models and their applications to
computer vision. In Proceedings of the International Congress of Mathematicians, volume 1, page 2,
1986.

[80] Stuart Geman, Daniel F Potter, and Zhiyi Chi. Composition systems. Quarterly of Applied Mathe-
matics, 60(4):707–736, 2002.

[81] James J Gibson. The perception of the visual world. 1950.

323

[82] Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamiltonian monte carlo meth-
ods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):123–214,
2011.

[83] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information
processing systems, pages 2672–2680, 2014.

[84] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. FFJORD:
free-form continuous dynamics for scalable reversible generative models. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[85] P. J. Green. Reversible jump markov chain monte carlo computation and bayesian model determina-
tion. Biometrika, 82:711–732, 1995.

[86] Ulf Grenander. A unified approach to pattern analysis. Advances in Computers, 10:175–216, 1970.

[87] Ulf Grenander and Michael I Miller. Pattern theory: from representation to inference. Oxford Uni-
versity Press, 2007.

[88] Peter Grindrod. The theory and applications of reaction-diffusion equations: patterns and waves.
Clarendon Press, 1996.

[89] M. G. Gu. A stochastic approximation algorithm with mcmc method for incomplete data estimation
problems. Preprint, Dept. of Math. and Stat., McGill Univ, 1998.

[90] Cheng-En Guo, Song-Chun Zhu, and Ying Nian Wu. Modeling visual patterns by integrating de-
scriptive and generative methods. International Journal of Computer Vision, 53(1):5–29, 2003.

[91] Cheng-en Guo, Song-Chun Zhu, and Ying Nian Wu. Towards a mathematical theory of primal sketch
and sketchability. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on,
pages 1228–1235. IEEE, 2003.

[92] Cheng-en Guo, Song-Chun Zhu, and Ying Nian Wu. Primal sketch: Integrating structure and texture.
Computer Vision and Image Understanding, 106(1):5–19, 2007.

[93] Peter W Hallinan, Gaile Gordon, Alan L Yuille, Peter Giblin, and David Mumford. Two-and three-
dimensional patterns of the face. AK Peters/CRC Press, 1999.

[94] Tian Han, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Alternating back-propagation for generator
network. In AAAI, volume 3, page 13, 2017.

[95] Tian Han, Erik Nijkamp, Xiaolin Fang, Song-Chun Zhu, and Ying Nian Wu. Divergence triangle for
joint training of energy-based model, generator model and inference model. 2018.

[96] Tian Han, Jiawen Wu, and Ying Nian Wu. Replicating active appearance model by generator network.
In International Joint Conferences on Artificial Intelligence, 2018.

[97] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data
mining, inference and prediction. Springer, 2009.

324

[98] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[99] D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. SIGGRAPHS, 1995.

[100] Mitch Hill, Erik Nijkamp, and Song-Chun Zhu. Building a telescope to look into high-dimensional
image spaces. Quarterly of Applied Mathematics, 77(2):269–321, 2019.

[101] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14(8):1771–1800, 2002.

[102] Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The wake-sleep algorithm for
unsupervised neural networks, 1995.

[103] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18(7):1527–1554, 2006.

[104] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

[105] Derek Hoiem, Andrew N Stein, Alexei A Efros, and Martial Hebert. Recovering occlusion boundaries
from a single image. In International Conference on Computer Vision (ICCV), pages 1–8, 2007.

[106] Yi Hong, Zhangzhang Si, Wenze Hu, Song-Chun Zhu, and Ying Nian Wu. Unsupervised learning
of compositional sparse code for natural image representation. Quarterly of Applied Mathematics,
72:373–406, 2013.

[107] John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[108] Berthold K. P. Horn, Richard S Szeliski, and Alan L. Yuille. Impossible shaded images. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(2):166–170, 1993.

[109] Berthold KP Horn. Shape from shading: A method for obtaining the shape of a smooth opaque object
from one view. 1970.

[110] Berthold KP Horn. The curve of least energy. CACM Transactions on Mathematical Software,
9(4):441–460, 1983.

[111] Berthold KP Horn. Height and gradient from shading. International journal of computer vision,
5(1):37–75, 1990.

[112] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional architec-
ture in the cat’s visual cortex. The Journal of physiology, 160(1):106, 1962.

[113] Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of
Machine Learning Research, 6(Apr):695–709, 2005.

[114] Aapo Hyvarinen. Connections between score matching, contrastive divergence, and pseudolikelihood
for continuous-valued variables. IEEE Transactions on neural networks, 18(5):1529–1531, 2007.

325

[115] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent component analysis, volume 46. John
Wiley & Sons, 2004.

[116] Katsushi Ikeuchi and Berthold KP Horn. Numerical shape from shading and occluding boundaries.
Artificial intelligence, 17(1-3):141–184, 1981.

[117] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[118] E. T. Jaynes. Information theory and statistical mechanics. Physical Review, 106:620–630, 1957.

[119] J.H.Elder and R.M.Goldberg. Contour grouping with prior models. Journal of Vision, 2(4):324–353,
2002.

[120] Xu Ji, João F Henriques, and Andrea Vedaldi. Invariant information clustering for unsupervised image
classification and segmentation. In Proceedings of the IEEE International Conference on Computer
Vision, pages 9865–9874, 2019.

[121] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational deep em-
bedding: An unsupervised and generative approach to clustering. arXiv preprint arXiv:1611.05148,
2016.

[122] Long Jin, Justin Lazarow, and Zhuowen Tu. Introspective learning for discriminative classification.
In Advances in Neural Information Processing Systems, 2017.

[123] B. Julesz. Textons, the elements of texture perception and their interactions. Nature, 290:91–97,
1981.

[124] Bela Julesz. Visual pattern discrimination. IRE Transactions on Information Theory, 8(2):84–92,
1962.

[125] Bela Julesz et al. Textons, the elements of texture perception, and their interactions. Nature,
290(5802):91–97, 1981.

[126] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. International Conference on Learning Representations, 2017.

[127] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adver-
sarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4401–4410, 2019.

[128] Hyunsoo Kim and Haesun Park. Nonnegative matrix factorization based on alternating nonnegativity
constrained least squares and active set method. SIAM Journal on Matrix Analysis and Applications,
30(2):713–730, 2008.

[129] Taesup Kim and Yoshua Bengio. Deep directed generative models with energy-based probability
estimation. ICLR Workshop, 2016.

[130] Benjamin B Kimia, Ilana Frankel, and Ana-Maria Popescu. Euler spiral for shape completion. Inter-
national Journal of Computer Vision, 54(1-3):159–182, 2003.

326

[131] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[132] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. International Conference
for Learning Representations, 2014.

[133] Diederik P. Kingma and Max Welling. Efficient gradient-based inference through transformations
between bayes nets and neural nets. CoRR, abs/1402.0480, 2014.

[134] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pages 10215–10224, 2018.

[135] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In Advances in neural information processing systems, pages
3581–3589, 2014.

[136] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009.

[137] Jean Kossaifi, Georgios Tzimiropoulos, and Maja Pantic. Fast and exact newton and bidirectional
fitting of active appearance models. IEEE transactions on image processing, 26(2):1040–1053, 2017.

[138] Alex Krizhevsky and Geoffrey E Hinton. Learning multiple layers of features from tiny images. 2009.

[139] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105,
2012.

[140] Dmitry Krotov and John J Hopfield. Unsupervised learning by competing hidden units. Proceedings
of the National Academy of Sciences, page 201820458, 2019.

[141] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[142] Yann LeCun, Sumit Chopra, Rata Hadsell, Mare’Aurelio Ranzato, and Fu Jie Huang. A tutorial on
energy-based learning. In Predicting Structured Data, volume 1. MIT Press, 2006.

[143] A. B. Lee, D. B. Mumford, and J. G. Huang. Occlusion models for natural images: A statistical study
of a scale-invariant dead leaves model. Int’l J. of Computer Vision, 41(1):35–59, 2001.

[144] Ann B Lee, JG Huang, and DB Mumford. Random collage model for natural images. International
Journal of Computer Vision, 2000.

[145] Chia-Hoang Lee and Azriel Rosenfeld. Improved methods of estimating shape from shading using
the light source coordinate system. artificial Intelligence, 26(2):125–143, 1985.

[146] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix factorization. In Advances
in Neural Information Processing Systems, pages 556–562, 2001.

[147] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional deep belief net-
works for scalable unsupervised learning of hierarchical representations. In International Conference
on Machine Learning, pages 609–616. ACM, 2009.

327

[148] T. Leung and J. Malik. Detecting, localizing and grouping repeated scene elements from an image.
In Proc. 4th ECCV, , UK, 1996.

[149] T. Leung and J. Malik. Recognizing surface using three-dimensional textons. In Greece Corfu, editor,
Proc. of 7th ICCV, 1999.

[150] M. S. Lewicki and B. A. Olshausen. A probabilistic framework for the adaptation and comparison of
image codes. JOSA, 16(7):1587–1601, 1999.

[151] Michael H Lin and Carlo Tomasi. Surfaces with occlusions from layered stereo. In Computer Vision
and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, volume 1,
pages I–I. IEEE, 2003.

[152] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

[153] Ce Liu, Song-Chun Zhu, and Heung-Yeung Shum. Learning inhomogeneous gibbs model of faces by
minimax entropy. In International Conference on Computer Vision, volume 1, pages 281–287. IEEE,
2001.

[154] Chuanhai Liu, Donald B Rubin, and Ying Nian Wu. Parameter expansion to accelerate em: The
px-em algorithm. Biometrika, 85(4):755–770, 1998.

[155] Fayao Liu, Chunhua Shen, and Guosheng Lin. Deep convolutional neural fields for depth estimation
from a single image. In CVPR, 2015.

[156] Jun S Liu. Monte Carlo strategies in scientific computing. Springer Science & Business Media, 2008.

[157] Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Learning FRAME models using CNN filters. In The
AAAI Conference on Artificial Intelligence, 2016.

[158] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial
autoencoders. arXiv preprint arXiv:1511.05644, 2015.

[159] J. Malik, S. Belongie, J. Shi, and T. Leung. Textons, contours and regions: Cue integration in image
segmentation. In Greece Corfu, editor, Proc. of 7th ICCV, 1999.

[160] J. Malik and P. Perona. Preattentive texture discrimination with early vision mechanisms. J. of Optical
Society of America A, 7, May 1990.

[161] Jitendra Malik. Interpreting line drawings of curved objects, 1986.

[162] S. Mallat and Z. Zhang. Matching pursuit in a time-frequency dictionary. IEEE trans. on Signal
Processing, 41:3397–3415, 1993.

[163] Stephane G Mallat. A theory for multiresolution signal decomposition: the wavelet representation.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 11(7):674–693, 1989.

[164] Stéphane G Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing, 1993.

[165] D. Marr. Vision. W.H. Freeman and Company, 1982.

328

[166] David Marr. Vision: A computational approach, 1982.

[167] David Marr. Vision: a computational investigation into the human representation and processing of
visual information. WH San Francisco: Freeman and Company, 1(2), 1982.

[168] David Marr and Herbert Keith Nishihara. Representation and recognition of the spatial organization
of three-dimensional shapes. Proc. R. Soc. Lond. B, 200(1140):269–294, 1978.

[169] Georges Matheron. Random sets and integral geometry. John Wiley & Sons, 1975.

[170] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do
actually converge? arXiv preprint arXiv:1801.04406, 2018.

[171] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In Advances in Neural Information Processing
Systems, pages 3111–3119, 2013.

[172] Ennio Mingolla and James T Todd. Perception of solid shape from shading. Biological cybernetics,
53(3):137–151, 1986.

[173] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, and Shin Ishii. Distributional
smoothing by virtual adversarial examples. stat, 1050:2, 2015.

[174] Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In
ICML, pages 1791–1799, 2014.

[175] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Advances in Neural Information Processing Systems, pages
2924–2932, 2014.

[176] David Mumford. The statistical description of visual signals. MATHEMATICAL RESEARCH,
87:233–256, 1996.

[177] David Mumford and Jayant Shah. Optimal approximations by piecewise smooth functions and vari-
ational problems. Communications on Pure and Applied Mathematics, 42(5):577–685, 1988.

[178] David Mumford and Jayant Shah. Optimal approximations by piecewise smooth functions and as-
sociated variational problems. Communications on pure and applied mathematics, 42(5):577–685,
1989.

[179] James D. Murray. A pre-pattern formation mechanism for animal coat markings. Journal of Theoret-
ical Biology, 88(1):161–199, 1981.

[180] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011.

[181] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011(2):5, 2011.

[182] Jiquan Ngiam, Zhenghao Chen, Pang W Koh, and Andrew Y Ng. Learning deep energy models. In
International Conference on Machine Learning, pages 1105–1112, 2011.

329

[183] Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu. On the anatomy of mcmc-
based maximum likelihood learning of energy-based models. arXiv, 2019.

[184] Mark Nitzberg and David Mumford. The 2.1-d sketch. In International Conference on Computer
Vision (ICCV), pages 138–144, 1990.

[185] Mark Nitzberg and Takahiro Shiota. Nonlinear image filtering with edge and corner enhancement.
IEEE Transactions on Pattern Analysis & Machine Intelligence, (8):826–833, 1992.

[186] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a
sparse code for natural images. Nature, 381:607–609, 1996.

[187] Bruno A Olshausen. Learning sparse, overcomplete representations of time-varying natural images.
In Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on, volume 1,
pages I–41. IEEE, 2003.

[188] Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by V1? Vision Research, 37(23):3311–3325, 1997.

[189] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
arXiv preprint arXiv:1601.06759, 2016.

[190] Pentti Paatero and Unto Tapper. Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values. Environmetrics, 5(2):111–126, 1994.

[191] Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the number of response regions of deep
feed forward networks with piece-wise linear activations. arXiv preprint arXiv:1312.6098, 2013.

[192] Alex P Pentland. Local shading analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, (2):170–187, 1984.

[193] Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic diffusion. IEEE
Transactions on pattern analysis and machine intelligence, 12(7):629–639, 1990.

[194] Tsai Ping-Sing and Mubarak Shah. Shape from shading using linear approximation. Image and
Vision computing, 12(8):487–498, 1994.

[195] J. Portilla and E. P. Simoncelli. A parametric texture model based on joint statistics of complex
wavelet coefficients. IJCV, 40:1, 2000.

[196] Bruno Poucet and Etienne Save. Attractors in memory. Science, 308(5723):799–800, 2005.

[197] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[198] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-supervised
learning with ladder networks. In Advances in Neural Information Processing Systems, pages 3546–
3554, 2015.

[199] Xiaofeng Ren, Charless C Fowlkes, and Jitendra Malik. Scale-invariant contour completion using
conditional random fields. In International Conference on Computer Vision (ICCV), pages 1214–
1221, 2005.

330

[200] Xiaofeng Ren, Charless C Fowlkes, and Jitendra Malik. Figure/ground assignment in natural images.
In In European Conference on Computer Vision (ECCV), pages 614–627, 2006.

[201] Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approx-
imate inference in deep generative models. In Tony Jebara and Eric P. Xing, editors, ICML, pages
1278–1286. JMLR Workshop and Conference Proceedings, 2014.

[202] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951.

[203] Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a maximum margin
classifier. The Journal of Machine Learning Research, 5:941–973, 2004.

[204] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Stabilizing training of
generative adversarial networks through regularization. In Advances in neural information processing
systems, pages 2018–2028, 2017.

[205] Stefan Roth and Michael J Black. Fields of experts: A framework for learning image priors. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pages
860–867. IEEE, 2005.

[206] S. Roweis and Z. Ghahramani. A unifying review of linear gaussian models. Neural Computation,
11:2, 1999.

[207] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. Science, 290(5500):2323–2326, 2000.

[208] Donald B Rubin. Multiple imputation for nonresponse in surveys, volume 81. John Wiley & Sons,
2004.

[209] Donald B Rubin and Dorothy T Thayer. EM algorithms for ML factor analysis. Psychometrika,
47(1):69–76, 1982.

[210] Daniel L Ruderman. The statistics of natural images. Network: computation in neural systems,
5(4):517–548, 1994.

[211] Ruslan Salakhutdinov and Geoffrey E Hinton. Deep boltzmann machines. In International Confer-
ence on Artificial Intelligence and Statistics, 2009.

[212] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Im-
proved techniques for training gans. In Advances in Neural Information Processing Systems, pages
2226–2234, 2016.

[213] Eric Saund. Perceptual organization of occluding contours generated by opaque surfaces. In Com-
puter Vision and Pattern Recognition (CVPR), pages 624–630, 1999.

[214] Eric Saund. Perceptual organization of occluding contours of opaque surfaces. Computer Vision and
Image Understanding, 76(1):70–82, 1999.

[215] Daniel Scharstein and Richard Szeliski. High-accuracy stereo depth maps using structured light. In
Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Confer-
ence on, volume 1, pages I–I. IEEE, 2003.

331

[216] Stan Sclaroff and John Isidoro. Active blobs. In Sixth International Conference on Computer Vision
(IEEE Cat. No. 98CH36271), pages 1146–1153. IEEE, 1998.

[217] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile
Computing and Communications Review, 5(1):3–55, 2001.

[218] Zhangzhang Si and Song-Chun Zhu. Learning and-or templates for object recognition and detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9):2189–2205, 2013.

[219] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support
inference from rgbd images. In European Conference on Computer Vision, pages 746–760. Springer,
2012.

[220] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

[221] Eero P Simoncelli, William T Freeman, Edward H Adelson, and David J Heeger. Shiftable multiscale
transforms. Information Theory, IEEE Transactions on, 38(2):587–607, 1992.

[222] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. ICLR, 2015.

[223] Steven Skiena. Combinatorics and graph theory with mathematica, 1990.

[224] Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár. Amortised
MAP inference for image super-resolution. In 5th International Conference on Learning Represen-
tations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

[225] Jost Tobias Springenberg. Unsupervised and semi-supervised learning with categorical generative
adversarial networks. arXiv preprint arXiv:1511.06390, 2015.

[226] X Yu Stella, Tai Sing Lee, and Takeo Kanade. A hierarchical markov random field model for figure-
ground segregation. In Proc. 4th International Conference on Energy Minimization Methods in Com-
puter Vision and Pattern Recognition (EMMCVPR), pages 118–131, 2002.

[227] Kevin Swersky, Marc’Aurelio Ranzato, David Buchman, Benjamin Marlin, and Nando Freitas. On
autoencoders and score matching for energy based models. In Lise Getoor and Tobias Scheffer,
editors, ICML, ICML ’11, pages 1201–1208, New York, NY, USA, June 2011. ACM.

[228] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2818–2826, 2016.

[229] Richard Szeliski. Fast shape from shading. CVGIP: Image Understanding, 53(2):129–153, 1991.

[230] M. Tanner. Tools for Statistical Inference. Springer, 1996.

[231] Yee Whye Teh, Max Welling, Simon Osindero, and Geoffrey E Hinton. Energy-based models for
sparse overcomplete representations. Journal of Machine Learning Research, 4(Dec):1235–1260,
2003.

332

[232] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):267–288, 1996.

[233] Tijmen Tieleman. Training restricted Boltzmann machines using approximations to the likelihood
gradient. In International Conference on Machine Learning, pages 1064–1071. ACM, 2008.

[234] Tijmen Tieleman. Training restricted boltzmann machines using approximations to the likelihood
gradient. ICML, pages 1064–1071, 2008.

[235] Antonio Torralba and Aude Oliva. Depth estimation from image structure. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 24(9):1226–1238, 2002.

[236] Zhuowen Tu. Learning generative models via discriminative approaches. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2007.

[237] Zhuowen Tu and Song-Chun Zhu. Image segmentation by data-driven markov chain monte carlo.
IEEE Transactions on pattern analysis and machine intelligence, 24(5):657–673, 2002.

[238] Zhuowen Tu and Song-Chun Zhu. Parsing images into regions, curves and curve groups. Interna-
tional Journal of Computer Vision, 69(2):223–249, 2006.

[239] Alan Mathison Turing. The chemical basis of morphogenesis. Bulletin of mathematical biology,
52(1-2):153–197, 1990.

[240] Radim Tyleček and Radim Šára. Spatial pattern templates for recognition of objects with regular
structure. In German Conference on Pattern Recognition, pages 364–374. Springer, 2013.

[241] Omar E Vega and Yee-Hong Yang. Shading logic: A heuristic approach to recover shape from
shading. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(6):592–597, 1993.

[242] Pascal Vincent. A connection between score matching and denoising autoencoders, 2010.

[243] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In International Conference on Machine
Learning, pages 1096–1103. ACM, 2008.

[244] David Waltz. Understanding line drawings of scenes with shadows, 1975.

[245] Jingbin Wang, M Betke, and Erdan Gu. Mosaicshape: Stochastic region grouping with shape prior.
In Computer Vision and Pattern Recognition (CVPR), pages 902–908, 2005.

[246] John YA Wang and Edward H Adelson. Layered representation for motion analysis. In Computer
Vision and Pattern Recognition (CVPR), pages 361–366, 1993.

[247] John YA Wang and Edward H Adelson. Representing moving images with layers. IEEE Trans. Image
Processing, 3(5):625–638, 1994.

[248] Max Welling. Herding dynamical weights to learn. In International Conference on Machine Learn-
ing, pages 1121–1128. ACM, 2009.

[249] Max Welling, Richard S Zemel, and Geoffrey E Hinton. Self supervised boosting. In Advances in
Neural Information Processing Systems, pages 665–672, 2002.

333

[250] Lance R. Willianms and Allen R. Hanson. Perceptual completion of occluded surfaces. Computer
Vision and Image Understanding(CVIU), 64(1):1–20, 1996.

[251] Tian-Fu Wu, Gui-Song Xia, and Song-Chun Zhu. Compositional boosting for computing hierarchical
image structures. In IEEE conf. on Computer Vision and Pattern Recognition (CVPR), pages 1–8,
2007.

[252] Y. N. Wu, S. C. Zhu, and X. W. Liu. Equivalence of Julesz and Gibbs Ensembles. ICCV, 1999.

[253] Ying Nian Wu, Zhangzhang Si, Haifeng Gong, and Song-Chun Zhu. Learning active basis model for
object detection and recognitio. International Journal of Computer Vision, 90:198–235, 2010.

[254] Ying Nian Wu, Song-Chun Zhu, and Cheng-En Guo. From information scaling of natural images to
regimes of statistical models. Quarterly of Applied Mathematics, 66:81–122, 2008.

[255] Ying Nian Wu, Song-Chun Zhu, and Xiuwen Liu. Equivalence of julesz and gibbs texture ensembles.
In Proceedings of the Seventh IEEE International Conference on Computer Vision, volume 2, pages
1025–1032. IEEE, 1999.

[256] Ying Nian Wu, Song Chun Zhu, and Xiuwen Liu. Equivalence of julesz ensembles and frame models.
International Journal of Computer Vision, 38(3):247–265, 2000.

[257] Ying Nian Wu, Song-Chun Zhu, and Xiuwen Liu. Equivalence of julesz ensembles and frame models.
International Journal of Computer Vision, 38:247–265, 2000.

[258] Jianwen Xie, Wenze Hu, Song-Chun Zhu, and Ying Nian Wu. Learning sparse frame models for
natural image patterns. International Journal of Computer Vision, 114:1–22, 2014.

[259] Jianwen Xie, Yang Lu, Ruiqi Gao, and Ying Nian Wu. Cooperative learning of energy-based model
and latent variable model via MCMC teaching. In The AAAI Conference on Artificial Intelligence,
2018.

[260] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Inducing wavelets into random fields
via generative boosting. Journal of Applied and Computational Harmonic Analysis, 41:4–25, 2016.

[261] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. A theory of generative ConvNet. In
International Conference on Machine Learning, pages 2635–2644, 2016.

[262] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, and Ying Nian Wu. Multimodal con-
ditional learning with fast thinking policy-like model and slow thinking planner-like model. arXiv
preprint arXiv:1902.02812, 2019.

[263] Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu. Synthesizing dynamic patterns by spatial-temporal
generative ConvNet. In IEEE Conference on Computer Vision and Pattern Recognition, pages 7093–
7101, 2017.

[264] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
In International conference on machine learning, pages 478–487, 2016.

[265] Xianglei Xing, Tian Han, Ruiqi Gao, Song-Chun Zhu, and Ying Nian Wu. Unsupervised disentan-
gling of appearance and geometry by deformable generator network. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 10354–10363, June 2019.

334

[266] Benjamin Yao, Xiong Yang, and Song-Chun Zhu. An integrated image annotation tool and large
scale ground truth database. In Proc.6th International Conference on Energy Minimization Methods
in Computer Vision and Pattern Recognition (EMMCVPR), pages 169–183, 2007.

[267] Laurent Younes. On the convergence of markovian stochastic algorithms with rapidly decreasing
ergodicity rates. Stochastics: An International Journal of Probability and Stochastic Processes, 65(3-
4):177–228, 1999.

[268] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN: construction of a large-
scale image dataset using deep learning with humans in the loop. CoRR, abs/1506.03365, 2015.

[269] Matthew D Zeiler, Graham W Taylor, and Rob Fergus. Adaptive deconvolutional networks for mid
and high level feature learning. In International Conference on Computer Vision, pages 2018–2025.
IEEE, 2011.

[270] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network. arXiv
preprint arXiv:1609.03126, 2016.

[271] Qang Zheng and Rama Chellappa. Estimation of illumination direction, albedo, and shape from
shading. IEEE Trans. on PAMI, 1991.

[272] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learning deep
features for scene recognition using places database. In Advances in Neural Information Processing
Systems, pages 487–495, 2014.

[273] S. C. Zhu, X. W. Liu, and Y. N. Wu. Exploring julesz texture ensemble by effective markov chain
monte carlo. PAMI, 22:6, June 2000.

[274] S. C. Zhu, Y. N. Wu, and D. Mumford. Minimax entropy principle and its application to texture
modeling. Neural Computation, 9:8, November 1997.

[275] Song-Chun Zhu. Statistical modeling and conceptualization of visual patterns. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25(6):691–712, 2003.

[276] Song-Chun Zhu and David Mumford. Grade: Gibbs reaction and diffusion equations. In ICCV, pages
847–854. IEEE, 1998.

[277] Song-Chun Zhu, David Mumford, et al. A stochastic grammar of images. Foundations and Trends®
in Computer Graphics and Vision, 2(4):259–362, 2007.

[278] Song-Chun Zhu and David B. Mumford. Prior learning and gibbs reaction-diffusion. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 19(11):1236–1250, 1997.

[279] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Minimax entropy principle and its application
to texture modeling. Neural Computation, 9(8):1627–1660, 1997.

[280] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum entropy
(frame): Toward a unified theory for texture modeling. International Journal of Computer Vision,
27(2):107–126, 1998.

[281] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Filters, random fields and maximum entropy
(frame): Towards a unified theory for texture modeling. International Journal of Computer Vision,
27(2):107–126, 1998.

335

	Story of David Marr
	Beyond David Marr's Paradigm
	Introducing the Book Series
	Introduction
	Goal of Vision
	Seeing as Bayesian Inference: Vision is Ill-Posed and Mostly an Illusion
	Knowledge Representation
	Pursuit of Statistical Models

	Statistics of Natural Images
	Image Space and Distribution
	Information and Encoding
	Image Statistics and Power Law
	Kurtosis and Sparsity
	High Kurtosis Motivates Sparse Representation

	Scale Invariance

	Textures
	The Julesz Quest
	MRF & Clique-Based Gibbs Models
	Markov Random Fields (MRF)
	Ising & Potts Model
	Gaussian Markov Random Fields (GMRF)
	Advanced Models: Hierarchical MRF and Mumford-Shah Model
	Selecting Filters and Learning Potential Functions

	Filters for Early Vision
	Correlation & Convolution
	Edge Detection Filters
	Gaussian Filter
	Derivative of Gaussian & Laplacian of Gaussian Filter
	Gabor Filter

	The FRAME Model
	Intuition and the Big Picture
	Deriving the FRAME model

	The Texture Ensemble
	Ensembles in Statistical Physics
	Texture Ensemble
	Type Theory and Entropy Rate Functions
	Equivalence of FRAME and Julesz Ensemble

	Deriving Partial Differential Equations from the MRF and FRAME models
	Turing Diffusion-Reaction
	Heat Diffusion
	Anisotropic Diffusion
	GRADE: Gibbs Reaction And Diffusion Equations
	Properties of GRADE

	Conclusion

	Textons
	Distinguishing Textures and Textons
	Julesz's Confusion
	Neural Coding Schemes

	Generative Models in Harmonic Analysis
	Basis and Frame
	Linear Factor Analysis

	Sparse Coding
	Image Representation
	Olshausen-Field model
	A three-level generative model

	Active basis model
	Olshausen-Field model for sparse coding
	Active basis model for shared sparse coding of aligned image patches
	Prototype algorithm
	Statistical modeling
	Shared matching pursuit
	Active Appearance Models

	The Sparse FRAME Model
	Dense FRAME
	Sparse representation
	Maximum likelihood learning
	Generative boosting
	Sparse model

	Compositional Sparse Coding
	Sparsity and Composition
	Compositional sparse coding model

	Bottom-up filters or top-down basis functions?

	Gestalt Laws and Perceptual Organization
	Gestalt Laws for Perceptual Organization
	Texton Process Embedding Gestalt Laws
	Introduction
	Background on Descriptive and Generative Learning
	A Multi-layered Generative Model for Texture
	A Descriptive Model of Texton Processes
	An Integrated Learning Framework
	Effective Inference by Simplified Likelihood
	Experiment II: Integrated learning and synthesis
	Discussion

	Primal Sketch: Integrating Textures and Textons
	Marr's Conjecture on Primal Sketch
	The Two Layer Model
	Structure domain
	The dictionary of image primitives
	Texture domain
	Integrated model
	The sketch pursuit algorithm

	Hybrid Image Templates
	Representation
	Prototypes, - balls, and saturation function
	Projecting image patches to 1D responses
	Template pursuit by information projection

	Example: vector fields for human hair analysis and synthesis
	Relations between Primal Sketch and the HoG and SIFT Representations

	2.1D Sketch and Layered Representation
	Problem Formulation
	The Variational Formulation by Nitzberg and Mumford
	The Energy Functional
	The Euler Elastica for Completing Occluded Curves

	The Mixed Markov Random Field Formulation
	Definition of W2D and W2.1D
	The mixed MRF and Its Graphical Representation
	Bayesian formulation
	Experiments

	The 2.1D Sketch with Layered Regions and Curves
	Generative models and Bayesian formulation
	Bayesian formulation for probabilistic inference
	Experiments

	2.5D Sketch and Depth Maps
	Marr's Definition
	2.5D Sketch from Primal Sketch — Shape from Stereo
	The Image Formation Model
	Two Layer Representation
	The inference algorithm
	Example results

	2.5D Sketch from Primal Sketch — Shape from Shading
	Overview of the Two-Layer Generation Model
	Results

	2.5D Sketch from Direct Estimation
	Dataset
	Model
	Results

	Learning by Information Projection
	Information projection
	Orthogonality and duality
	Maximum Likelihood Implementation
	The Minimax Learning Framework
	Model Pursuit Strategies

	A Unifying View
	Relation to Discriminative Learning
	Learning FRAME
	Learning Shape Patterns

	Information Scaling and Regimes of Models
	Image Scaling
	Perceptual Entropy
	A Continuous Spectrum
	Two Coding Schemes
	Perceptual Scale Space
	Perceptibility, Metastability, and the Energy Landscape

	Image Models with Multilayer Neural Networks
	Deep FRAME
	From FRAME to deep FRAME
	ConvNet filters
	FRAME with ConvNet filters
	Learning and sampling
	Learning a new layer of filters
	Deep convolutional energy-based model
	Hopfield auto-encoder
	Multigrid sampling and modeling
	Adversarial interpretation
	Short-run MCMC

	Generator Network
	Factor analysis
	Non-linear factor analysis
	Learning by alternating back-propagation
	EM, density mapping, and density shifting
	Extracting appearance and geometry, nonlinear generalization of the AAM model
	Dynamic generator model
	Unsupervised clustering and semi-supervised classification
	Short-run inference dynamics

	Stochastic Adversarial Defense using Deep Frame

	A Tale of Three Families: Discriminative, Generative and Descriptive Models
	Introduction
	Non-hierarchical linear forms of the three families
	Discriminative models
	Descriptive model
	Generative models

	Interactions between different families
	Discriminative learning of descriptive model
	DDMCMC: integration of discriminative and generative models

	Hierarchical forms of the three families
	Recent developments
	Discriminative models by convolutional neural networks
	Descriptive models
	Introspective learning
	Generative models

	Variational, adversarial and cooperative learning
	Variational auto-encoder
	Adversarial contrastive divergence
	Integrating variational and adversarial learning by divergence triangle
	Cooperative learning
	Conditional learning via fast thinking initializer and slow thinking solver

	Divergence triangle
	Flow-based model and flow contrastive estimation
	Discussion
	Model and algorithm
	Model
	Maximum likelihood
	Short-run MCMC
	Algorithm
	Theoretical understanding

	Discussion
	Index
	Bibliography

