
Formulation of the Variational Autoencoder and Evidence Lower Bound and an
Application to the MNIST Dataset

Eric M. Fischer
University of California Los Angeles

Los Angeles, CA 90095
emfischer712@ucla.edu

303 759 361

Abstract

We will provide a rigorous statistical formulation for the
Variational Autoencoder (VAE), which includes a deriva-
tion for the variational lower bound, or evidence lower
bound (ELBO). The variational lower bound is central to
the algorithm and enables optimization of a tractable ob-
jective function, the Stochastic Gradient Variational Bayes
(SGVB) estimator, specifically created for the VAE. We
will then apply the variational autoencoder to the MNIST
database of handwritten digits to perform encoding, decod-
ing, and display some generated data samples.

1. Introduction

An underlying motivation for this study was to explore
the intersection of Bayesian inference and neural networks.
Before the resurgence of neural networks due to advances
in computing power, Bayesian inference due to its high
computational cost was applied mostly to small datasets
for extracting information and performing regularization
[13]. Now Bayesian inference and neural networks are
commonly leveraged together in Bayesian neural networks
to tackle demanding computational problems. As the VAE
employs a Bayesian neural network, let us cover some as-
sociated terminology.

First, a Bayesian network (Bayes network, belief net-
work, decision network, Bayes(ian) model, or probabilistic
directed acyclic graphical model) is a probabilistic graph-
ical model that represents a set of variables and their con-
ditional dependencies via a directed acyclic graph (DAG).
The nodes represent variables in the Bayesian sense: they
may be observable quantities, latent variables, unknown pa-
rameters, or hypotheses. Edges represent conditional de-
pendencies, and accordingly nodes without a connecting
edge are conditionally independent. Each node has an as-
sociated probability function that accepts as input a set of

values for the node’s parent variables and gives as output
the probability, or probability distribution, of the variable
represented by the node [3] [19]. So a Bayesian network is
a graphical model that encodes probabilistic relationships
among variables of interest, taking prior knowledge and
data and estimating the posterior probabilities of outcomes.
Predictions are made by marginalizing over distributions of
parameters.

This is in contrast to an artificial neural network, which
uses maximum likelihood estimation (MLE) to determine
network parameters (weights and biases) and hence make
predictions. Neural networks do not have any such struc-
ture like the Bayesian network that gives valuable infor-
mation about the conditional dependence between variables
[10]. A prominent advantage of the neural network, how-
ever, is that it can appropriately handle any correlation or
dependence between input variables. Bayesian networks
like Naive Bayes assume that all input variables are inde-
pendent, which if untrue will negatively impact the perfor-
mance of the network. By modeling probability distribu-
tions, however, the Bayesian network is more robust and is
regularly utilized for inference, modeling, and prediction,
whereas the neural network is mostly used for prediction
[18] [17].

The VAE as mentioned uses a Bayesian neural network,
which extends a standard artificial neural network with pos-
terior inference. A Bayesian neural network, by placing a
prior distribution on its weights, is able to capture a measure
of uncertainty in predictions that a neural network cannot.
From a probabilistic perspective, this is crucial. The MLE
that neural networks perform to determine weight values ig-
nores any uncertainty in e.g. the weight values or the even
the choice of MLE as an optimization method [14].

Also, neural networks are well-known to be suscepti-
ble to overfitting due to no quantification of uncertainty,
and thus they employ techniques such as L2 regularization
(which from a Bayesian perspective is equivalent to induc-

1

ing prior distributions on the weights). Neural network op-
timization in this case is akin to searching for maximum a
posteriori estimators rather than MLE. Although this works
well in practice, from a probabilistic perspective it only al-
leviates the overfitting issue but does not solve it [11] [4].
Hence, we have a motivation for Bayesian neural networks:
to lend a probabilistic interpretation of the neural network
with which we can perform posterior inference.

2. Variational Autoencoder
Although we will introduce the variational autoencoder

with a multivariate normal distribution to expound the full
color of the model, in this study a binomial distribution was
used to model the MNIST digit data.

Broadly speaking, autoencoders and variational autoen-
coders provide ways to perform unsupervised learning with
neural networks. Other ways to perform unsupervised
learning include both linear techniques such as Principal
Component Analysis (PCA) and Factor Analysis (FA) and
non-linear techniques such as Locally Linear Embedding
(LLE), and T-distributed Stochastic Neighbor Embedding
(tSNE).

Autoencoders and variational autoencoders produce
lower-dimensional representations of input data. Given an
input x ∈ Rn, they will produce h ∈ Rd where d < n. The
key difference is that the VAE is probabilistic and a gener-
ative model. This means we can obtain generated samples
x ∈ Rn by sampling from its distribution [8] [6]. VAEs
belong to a class of generative models that can generate ex-
amples of data by learning statistics about it.

2.1. Autoencoder

An autoencoder is a type of artificial neural network that
learns efficient data codings, i.e. performs feature detec-
tion, in an unsupervised manner. It learns an encoding, or
representation, for a set of data usually for the purposes of
dimensionality reduction. In addition to the this reduction,
the autoencoder has a reconstruction side, in which it gen-
erates from a reduced encoding a representation as similar
as possible to the original to the original input [2]. The au-
toencoder has become very popular in learning generative
models of data, although Generative Adversarial Networks
(GANs) briefly discussed later have shown more success
with data generation in particular [15].

Hence the basic structure of an autoencoder involves an
encoder and a decoder. The encoder performs a dimension-
ality reduction step on the data x ∈ R to obtain features
h ∈ Rd. The decoder maps the features h ∈ Rd to closely
reproduce the input, producing x̂ ∈ Rn. The autoencoder
solves the following problem:

Let x ∈ Rn, f(·) : Rn → Rd and g(·) : Rd → Rn.

x̂ = g(f(x))

We define a loss function L(x, x̂) and minimize L with re-
spect to the parameters of f(·) and g(·). We could use vari-
ous loss functions, but a common one is the squared loss:

L(x, x̂) = ||x− x̂||2

The functions f() and g() represent deep neural networks
and the encoder and decoder, respectively [8].

3. VAE Description

Variational autoencoders, introduced by Kingma and
Welling in 2014, do not learn f() and g() directly but rather
probabilistic versions of f() and g(). That is, they learn
distributions of the features (or activations) z given the
input x and the input x given the features z. Concretely, the
VAE learns:

p(z|x): distribution of the features given the input
p(x|z): distribution of the input given the features

These distributions can express complex, nonlinear
transformations as they are parameterized by neural net-
works [8], This also means we can train them by stochas-
tic gradient descent or various other first-order optimization
methods that have demonstrated success in neural networks
such as Adam, RMSprop, and stochastic gradient descent
with Nesterov momentum [7].

There are various benefits to learning distributions like
the VAE does. If the data is noisy, a model of the distri-
bution of the data can be more useful for a given problem.
Also, the relationship between observed and latent variables
is often nonlinear, in which case the VAE provides a way
to do inference. And as mentioned previously, because the
VAE model learns p(x|z) and accordingly samples z before
subsequently x, it is a generative model that can generate
data with similar statistics to the input [8].

The following is a conceptual diagram of the VAE.

Figure 1. Conceptual diagram of the VAE [8]

2

Note we do not infer activations z directly from the in-
put x and infer the (encoded and decoded) output x̂ directly
from z, as one does with a standard autoencoder. With
the VAE, instead of performing the inference, or learning,
z = f(x), we learn the distribution q(z|x). Similarly, in-
stead of learning x̂ = g(z), we learn the distribution p(x|z).

Accordingly, to obtain values for z and x̂, we sample
from the learned distributions. We can see how VAE is a
probabilistic variant of the autoencoder [8].

4. VAE Formulation

We will formulate the VAE from the context of a gen-
erative model. If we would like to generate samples from
a distribution p(x), instead of p(x) directly, we can use a
latent variable model.

Latent variable models model the data x as coming from
an unobserved, or latent, variable z. In the event it is dif-
ficult to model p(x) directly, one can choose a distribution
p(z) and model p(x|z). The conditional distribution p(x|z)
can be defined as some mapping x = g(z) that is deter-
mined by the prior distribution p(z) and the function g()
[5].

Once we know p(z) and p(x|z), we can generate
samples from p(x) as follows:

1. Generate a random sample from zs ∼ p(z)
2. Generate a sample xs ∼ p(x|z = zs)

Crucially, the sample of xs in Step 2 is indeed from p(x).
This is because the sample has probability p(x, zs), so by
repeatedly sampling (i.e. drawing a sample for each of the
sampled zs variables), the resulting probability density of
the sampled xs variables in Step 2 is:

p(x) ≈ 1

n

n∑
i=1

p(x, z(i)s)

which approximates the distribution of x [8].
As a note on designing the prior distribution p(z), in al-

most all cases we can set z ∼ N (0, I) and consider it a non-
stringent constraint on the distribution of the latent vari-
ables. This is because, as long as x|z is expressive enough
(e.g. it has enough nonlinear transformations), z can be a
simple distribution.

In general with the VAE, we can design both p(z) and
p(x|z) to optimize the generative process for p(x). And by
keeping p(z) simple, we can concentrate on optimizing x|z
to generate the distribution p(x).

So we let the expressive capacity of the nonlinear trans-
formation x = g(z) find a complex fit to the data p(x).

To summarize, a variational autoencoder models the dis-
tribution p(x) not directly but through a latent variable, so

that modeling the complex distribution is reformulated as a
nonlinear transformation of a simpler latent variable z [8].

4.1. Modeling p(x)

To find the parameters θ of the model, we could follow a
standard process with neural networks. We define a loss
function, calculate the gradients of it with respect to the
paremeters θ, and apply a version of stochastic gradient de-
scent to minimize the loss function given the gradient. The
most intuitive function to optimize is the likelihood func-
tion. We can maximize the likelihood of observing the data:

L(θ|x) =

m∏
i=1

pθ(x
(i))

For one example x, maximizing the likelihood and finding
pθ(x) would thus entail:

pθ(x) =

∫
pθ(x, z)dz

=

∫
pθ(x|z)p(z)dz

But with the VAE, as it is a neural network x is a non-
linear function of z, so the distribution pθ(x, z) cannot be
written analytically and hence pθ(x) is intractable. So we
cannot use an approach like the expectation maximization
algorithm to optimize the parameters θ, which is a helpful
way to evaluate the integral when e.g. x|z and x are normal
distributions and x is a linear function of z.

Another approach to obtain samples from pθ(x) to find
the parameters θ might be Monte Carlo sampling. Namely,
we could effectively sample from the distribution p(x) by
sampling z and then calculating x|z. But this is only
tractable when x is relatively low-dimensional and this is
often not the case. If x were a high-dimensional 32x32x3
pixel image, for example, the curse of dimensionality makes
it such that we need to obtain a very large number of sam-
ples to get an accurate representation of x.

So we eliminate approaches like the expectation maxi-
mization algorithm or Monte Carlo sampling to calculate
p(x) for the maximum likelihood objective. Instead, we
will arrive at a different objective function for VAEs: the
evidence lower bound (ELBO), or variational lower bound.

Before doing so, note that our model for pθ(x) is a mix-
ture of infinitely many Gaussians. This is more powerful
than a Gaussian mixture model (GMM) that is considered
too restrictive and other approaches one might consider for
modeling pθ(x). With infinitely many Gaussians, each im-
age sample x has a corresponding latent variable z and con-
ditional Guassian distribution pθ(x|z). Note that even if the
Gaussians are factorized, i.e. have independent components
for each dimension, the mixture is not [1].

3

4.2. Arriving at the Variational Lower Bound

Using the evidence lower bound (ELBO) as our objec-
tive function allows us to perform variational inference in
the VAE. The idea is that, as we cannot write

∏
i p(x

(i)),
we can instead derive a lower bound for it. Then assuming
that that lower bound is tractable, we can optimize the pa-
rameters θ with respect to it. Hence the goal is to maximize
the lower bound to (hopefully) increase the likelihood. Note
the similarity here with expectation maximization [8].

To arrive at ELBO, first recall our model for pθ(x),
which is intractable as it has an intractable integral:

pθ(x) =

∫
pθ(x|z)p(z)dz

The first step to overcoming this issue and deriving
ELBO is noting that p(x, z) = p(z|x)p(x) = p(x|z)p(z),
so we can also express p(x) as:

p(x) =
p(x|z)p(z)
p(z|x)

Now we have another formulation for p(x), but the dis-
tribution p(z|x) in the denominator is also intractable. To
overcome this, we can approximate p(z|x) with another dis-
tribution we introduce, q(z|x) [8].

The distribution q(z|x) takes the form of a nonlinear
neural network with normally distributed statistics, just as
the distribution x|z does. Concretely,

qφ(z|x) = N (µφ(x),Σφ(x)

pθ(x|z) = N (µθ(z),Σθ(z)

If we then include a penalty term in the objective func-
tion for the divergence between p(z|x) and q(z|x), we can
make it such that q(z|x) is as close to p(z|x) as possible.
We can measure the divergence with Kullback-Leibler (KL)
divergence, which is the expectation of the logarithmic dif-
ference between two distributions. The KL divergence of
q(z) and p(z) is defined as follows:

KL(q||p) = −
∑
z

q(z)log
p(z)

q(z)

As we next define ELBO, let us summarize the architec-
ture of the VAE at this stage.

Figure 2. VAE before ELBO

Thus the encoder network samples latent variables z
with the following:

1. Accept an input x
2. Calculate qφ(z|x) = N (µφ(x),Σφ(x))
3. Sample z ∼ q(z|x)

And the decoder network samples latent variables x
with the following [8]:

1. Accept an sampled latent variable z ∼ N (0, I)
2. Calculate pθ(x|z) = N (µθ(z),Σθ(z)
3. Sample x ∼ p(x|z)

Note that the parameters φ belongs to the encoder and
the parameters θ to the decoder. As such, the VAE paper
refers to the parameters φ as variational parameters and the
parameters θ as generative parameters [9].

4.3. Variational Lower Bound

The first step in deriving the evidence lower bound is
observing that we can state the following for one sample
x(i), which for simplicity we refer to as x here and for the
rest of the proof:

log pθ(x) = Ez∼q(z|x) log pθ(x)

This is intuitive once digested, as the term log pθ(x) has
no relation to the expectation of z, i.e. it is independent
of z. Also by the linearity of expectation, starting with the
right-hand side (RHS) of the equality, we can see:

Ez∼q(z|x)log pθ(x) = log pθ(x)Ez∼q(z|x)1
= log pθ(x)

For the rest of the proof, we denote this introduced term
Ez∼q(z|x) as Ez:

log pθ(x) = Ez log pθ(x)

(1)
= Ez log

p(x|z)p(z)
p(z|x)

= Ez log (
p(x|z)p(z)
p(z|x)

q(z|x)

q(z|x)
)

(2)
= Ez log p(x|z)− Ez log

q(z|x)

p(z)
+

Ez log
q(z|x)

p(z|x)
(3)
= Ez log p(x|z)− KL(q(z|x)||p(z)) +

KL(q(z|x)||p(z|x))

≥ Ez log p(x|z)− KL(q(z|x)||p(z))

The critical steps of the derivation are labeled (1), (2),
and (3). For (1), we use the chain rule for probability. For

4

(2), we expand the logarithm and use the linearity of expec-
tation. For (3), we use the definition of KL divergence. And
the final inequality can be drawn due to the KL divergence
property KL(q||p) ≥ 0 for any q, p [8].

Note as well that a KL divergence term
KLq(z|x)||p(z|x) has been dropped. This term ex-
presses the divergence between the approximation q(z|x)
and the distribution it seeks to approximate, p(z|x). Hence
it can quantify the penalty in estimating the log-likelihood
of the data by using q(z|x) instead of p(z|x). In conclusion,
the lower bound on the log-likelihood of the data is:

log pθ(x) ≥ Ez log p(x|z)− KL(q(z|x)||p(z))
= Lvae(x)

Lvae(x) is called the evidence lower bound (ELBO) or
variational lower bound.

Importantly, we now have a loss function, namely the
lower bound Lvae(x), which is tractable (the first and sec-
ond terms can be computed). The first term Ez log p(x|z)
can be easily approximated with batches of samples during
learning. Namely, we calculate q(z|x(i)), sample z from
this distribution, and subsequently calculate log p(x(i)|z).
These 3 steps are diagrammed in the computational graph
below.

Figure 3. ELBO calculation for log p(x|z)

The second term, the KL divergence, is a simple analytic
calculation using the parameters uφ, uθ, Σφ, Σθ. When the
probability distributions q() and p() are Guassian, it can be
calculated as follows [8]:

KL(N (µ0,Σ0),N (µ1,Σ1) =

1

2

[
tr(Σ−11 Σ0)+(µ1−µ0)TΣ−11 (µ1−µ0)−d+log

det Σ1

det Σ0

]
The derivation of the evidence lower bound (ELBO) is

central to the VAE algorithm. In general, it allows the VAE
to use a variational approach for latent representation learn-
ing (variational Bayesian methods approximate intractable
integrals in Bayesian inference), and it leads to a specific

estimator for the VAE training algorithm called the Stochas-
tic Gradient Variational Bayes (SGVB) estimator, which we
introduce after the necessary reparameterization step.

4.4. Reparameterization Technique

For the first term Ez log p(x|z) of the ELBO, or varia-
tional lower bound, that involves sampling z ∼ q(z|x(i)),
the VAE reparameterization technique must be employed.
This is because neural networks cannot perform backpropa-
gation (necessary to perform weight updates) through sam-
pling procedures like this sampling of z. There must be
another way to calculate z that will allow backpropagation
to be performed.

The solution is to sample ε ∼ N (0, I) and then calculate
analytically:

z = uφ(x(i)) + Σ
1
2

φ (x(i))ε

As here z is just a linear transformation of ε with mean
uφ(x(i)) and covariance Σφ(x(i)), it indeed constitutes a
sample from q(z|x(i)) and now the sampling can take place
for ε as opposed to z. This solves the issue of not being
able to backpropagate, as the neural network does not need
to backpropagate through ε, contrary to z [8].

Now that the VAE model is reparameterized to sample
through the parameter ε instead of z, the ELBO variational
lower bound can be optimized.

4.5. Final VAE Model

The final computational graph to calculate the ELBO for
the VAE is below.

Figure 4. VAE after ELBO

As we backpropagate through the parameters θ and φ in
optimizing the ELBO, we obtain two gradients:

∇θLvae and ∇φLvae
With these gradients, we can use stochastic gradient descent
or other optimization methods to optimize the parameters φ

5

and θ of the encoder and decoder neural networks, respec-
tively.

In conclusion, we have the Stochastic Gradient Varia-
tional Bayes (SGVB) estimator which we can optimize for
the variational autoencoder:

Lvae = Ez log p(x|z)− KL(q(z|x)||p(z))

Now that we have derived the VAE and its ELBO objec-
tive function, we can observe some brief results of the VAE
applied to the MNIST dataset. Specifically, after briefly in-
troducing the dataset, we observe the results of the decod-
ing, encoding, and data generation processes.

5. MNIST Dataset

The MNIST database of handwritten digits has a train-
ing set of 60,000 examples and a test set of 10,000 exam-
ples. The digits have been size-normalized and centered in
a fixed-size image. The dataset is optimal for learning pat-
tern recognition methods on real-world data while expend-
ing minimal effort on preprocessing [12].

Figure 5. A subset of the MNIST database of handwritten digits

The original black and white (bilevel, not grayscale) im-
ages from NIST were size-normalized to fit in a 20x20 pixel
box while preserving their aspect ratio.

The images were centered in a 28x28 pixel image by
computing the center of mass of the pixels for each image
and then translating the image to position this calculated
point at the center of a 28x28 pixel field.

The handwritten digits were obtained from a combina-
tion of U.S. Census Bureau employees and high-school
students, the samples from high-school students providing
more variation [12].

6. VAE on the MNIST Dataset

A diagram of the variational autoencoder architecture
applied to the MNIST dataset is provided below.

Figure 6. Variational autoencoder

Note how the sampling takes place for ε and not z, which
was the goal of the reparameterization technique in order to
be able to optimize the ELBO variational lower bound.

7. Results

Now we can review the results of the variational autoen-
coder decoding, encoding, and data generation processes.

7.1. VAE Encoding and Decoding

This is an example of an encoded digit, the result after
passing an input image x through the encoding process to
undergo dimensionality reduction.

Figure 7. VAE encoding output

And we display the same image after passing it through
the decoder, which produces an output image using the en-
coding from the encoder. The aim of the decoder, if not
performing the related task of data generation, is to output
an image that looks as similar as possible to the provided
input image x.

Figure 8. VAE decoding output

Lastly, below is a visualization of some MNIST images
before and after being passed to the variational autoencoder
for dimensionality reduction.

6

Figure 9. Images before and after autoencoding

In the left column are input images x and in the right column
the encoded and subsequently decoded output images.

7.2. VAE Data Generation

We can also observe some generated images by the VAE.

Figure 10. VAE Generated Data

These images were produced without any corresponding in-
put image x.

8. Related Work
There exist many types of generative models in the liter-

ature, but a popular one with several key advantages is the
generative adversarial network (GAN). Namely, the GAN
generator has few restrictions in that it could easily be made
into a convolutional neural network (CNN) or Long Short
Term Memory (LSTM) network, it also does not require a
variational lower bound, and GANs are asymptotically con-
sistent. Additionally, as mentioned previously, GANs are
well-known for generating more realistic data samples [8].
(Interestingly, there still does not exist a proof that VAEs
are asymptotically consistent.)

A key difference between the VAE and the GAN is with
respect to how they generate data. We saw that with the
VAE, we had to learn some probability pmodel(x) to gener-
ate data. In a GAN, which can be seen as a game between a
generator (generative model) and discriminator (generator’s
opponent), the discriminator learns an approximation of the
ratio pdata(x)/pmodel(x). This is the central idea of the

GAN and makes it distinctly different than other generative
models that learn pmodel(x) directly, or indirectly via latent
variable models. By learning this ratio, the discriminator
can better judge the quality of samples from the generator,
i.e. whether they are real or generated images [8].

Other than the variational autoencoder, extended autoen-
coders in the literature include sparse autoencoders, denois-
ing autoencoders, and contractive autoencoders, amongst
others.

9. Future Work
Most prominently, we would like to extend this project to

work with an infinite mixture of Gaussian distributions, in
addition to the mixture of binomial distributions used for the
MNIST data in this paper. This would allow us to reperform
similar experiments with the CIFAR-10 dataset, applying
our created variational autoencoder to natural images with
diverse structure.

Figure 11. Encoded and decoded CIFAR-10 horse

Also, it would be very interesting to perform a compar-
ison between a VAE and GAN applied to the CIFAR-10
dataset or related computer vision tasks, as we mentioned
how GANs are subjectively better at generating data sam-
ples [8].

Lastly, research at the intersection of convolutional neu-
ral networks (CNN) and the variational autoencoder for the
purposes of data generation is fascinating and immense.
One paper in particular, by Jianwen Xie, Yang Lu, Song-
Chun Zhu, and Ying Nian Wu at the University of Califor-
nia Los Angeles, in which a generative CNN is derived from
a discriminative CNN in an effort to improve generated re-
sults, would be a great source for more realistic data gen-
eration using VAEs with CNNs [16]. Research by Dmitry
Vetrov in scalable methods for Bayesian neural networks
would also be useful for research regarding scalability [13].

10. Conclusion
In conclusion, our statistical formulation for the Vari-

ational Autoencoder (VAE) has given us a deeper under-
standing for the necessity of the variational lower bound,
or evidence lower bound (ELBO), specific to the VAE. By

7

deriving a tractable objective function called the Stochastic
Gradient Variational Bayes (SGVB) estimator, we can op-
timize the VAE model. We also applied the variational au-
toencoder to the MNIST database of handwritten digits and
observed the fascinating results of the encoding, decoding,
and data generation processes.

References
[1] Jaan Altosaar. Tutorial - what is a varia-

tional autoencoder? https://jaan.io/
what-is-variational-autoencoder-vae-tutorial/.

[2] Autoencoder. Autoencoder — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/wiki/
Autoencoder.

[3] Bayesian Network. Bayesian network — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/wiki/
Bayesian_network.

[4] Chistopher M. Bishop. Pattern Recognition and Machine
Learning. Springer. http://users.isr.ist.utl.
pt/˜wurmd/Livros/school/Bishop.

[5] Carl Doersch. Tutorial on variational autoencoders. https:
//arxiv.org/pdf/1606.05908.pdf.

[6] David Duvenaud. Differentiable inference and gen-
erative models. http://www.cs.toronto.edu/

˜duvenaud/courses/csc2541/.
[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[8] Jonathon C. Kao. Generative adversarial net-
works. https://seas.ucla.edu/˜kao/nndl/
lectures/gans.pdf.

[9] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. arXiv, May 2014. https://arxiv.org/
pdf/1312.6114.pdf.

[10] Volodymyr Kuleshov. Cs 228: Probabilistic graph-
ical models. https://ermongroup.github.io/
cs228-notes/.

[11] CS 229: Machine Learning. Machine learning. http://
cs229.stanford.edu/.

[12] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges.
The mnist database of handwritten digits. http://yann.
lecun.com/exdb/mnist/.

[13] Daniil Polykovskiy and Alexander Novikov.
Bayesian methods for machine learning.
https://www.coursera.org/learn/
bayesian-methods-in-machine-learning.

[14] Ying Nian Wu, Ruiqi Gao, Tian Han, and Song-Chun Zhu.
A tale of three probabilistic families: Discriminative, de-
scriptive and generative models. Quarterly of Applied
Mathematics. http://www.stat.ucla.edu/˜ywu/
QAM2018.pdf.

[15] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Ying Nian
Wu. A theory of generative content. Annals of
Statistics. http://www.stat.ucla.edu/˜jxie/
download/GenerativeConvNet.pdf.

[16] Jianwen Xie, Yang lu, Song-Chun Zhu, and
Ying Nian Wu. A theory of generative convnet.
http://www.stat.ucla.edu/˜jxie/download/
GenerativeConvNet.pdf.

[17] Qing Zhou. Causal dags: Inference and learning.
http://www.stat.ucla.edu/˜zhou/courses/
Stats201C_DAG_Slides.pdf.

[18] Qing Zhou. Introduction to graphical models.
http://www.stat.ucla.edu/˜zhou/courses/
Stats201C_Graph_Slides.pdf.

[19] Qing Zhou. Random graphs for modeling network data.
http://www.stat.ucla.edu/˜zhou/courses/
Stats201C_Network_Slides.pdf.

8

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Bayesian_network
http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop
http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop
https://arxiv.org/pdf/1606.05908.pdf
https://arxiv.org/pdf/1606.05908.pdf
http://www.cs.toronto.edu/~duvenaud/courses/csc2541/
http://www.cs.toronto.edu/~duvenaud/courses/csc2541/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://seas.ucla.edu/~kao/nndl/lectures/gans.pdf
https://seas.ucla.edu/~kao/nndl/lectures/gans.pdf
https://arxiv.org/pdf/1312.6114.pdf
https://arxiv.org/pdf/1312.6114.pdf
https://ermongroup.github.io/cs228-notes/
https://ermongroup.github.io/cs228-notes/
http://cs229.stanford.edu/
http://cs229.stanford.edu/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.coursera.org/learn/bayesian-methods-in-machine-learning
https://www.coursera.org/learn/bayesian-methods-in-machine-learning
http://www.stat.ucla.edu/~ywu/QAM2018.pdf
http://www.stat.ucla.edu/~ywu/QAM2018.pdf
http://www.stat.ucla.edu/~jxie/download/GenerativeConvNet.pdf
http://www.stat.ucla.edu/~jxie/download/GenerativeConvNet.pdf
http://www.stat.ucla.edu/~jxie/download/GenerativeConvNet.pdf
http://www.stat.ucla.edu/~jxie/download/GenerativeConvNet.pdf
http://www.stat.ucla.edu/~zhou/courses/Stats201C_DAG_Slides.pdf
http://www.stat.ucla.edu/~zhou/courses/Stats201C_DAG_Slides.pdf
http://www.stat.ucla.edu/~zhou/courses/Stats201C_Graph_Slides.pdf
http://www.stat.ucla.edu/~zhou/courses/Stats201C_Graph_Slides.pdf
http://www.stat.ucla.edu/~zhou/courses/Stats201C_Network_Slides.pdf
http://www.stat.ucla.edu/~zhou/courses/Stats201C_Network_Slides.pdf

