
Implementation and Convergence Analysis of First-Order Optimization
Methods for a Fully-Connected Neural Network

Eric M. Fischer
University of California Los Angeles

Los Angeles, CA 90095
emfischer712@ucla.edu

303 759 361

Abstract

This study presents an in-depth comparative analysis
into the Python implementation of 5 first-order optimiza-
tion methods: stochastic gradient descent (SGD), stochas-
tic gradient descent with momentum (SGD-M), stochastic
gradient descent with Nesterov momentum (SGD-NM), root
mean square prop (RMSprop), and Adam. We then per-
form a convergence analysis and discuss why the results
confirm the distinguishing characteristics of the first-order
methods discussed in the Methods section. Adam and RM-
Sprop exhibit the best convergence and prove to be the best
first-order optimization methods for a fully-connected neu-
ral network applied to a CIFAR-10 classification task.

1. Introduction

Stochastic gradient-based optimization methods are of
critical practical importance to various fields of science and
engineering. If an objective function is differentiable with
respect to its parameters, gradient descent is a relatively
effective optimization method, as evaluating the first-order
partial derivatives with respect to the parameters is just as
computationally expensive as evaluating the function. Of-
ten, however, objective functions are stochastic, composed
of a sum of subfunctions evaluated at different data subsam-
ples. In these cases, stochastic gradient descent can improve
convergence, taking gradient steps with respect to individ-
ual subfunctions. In addition to data subsampling, objective
functions can be noisy when they employ optimization tech-
niques such as dropout regularization in neural networks.
In this paper, as higher-order optimization methods are ill-
suited for high-dimensional parameter spaces such as those
of neural networks, we focus on several of the most popular
first-order optimization methods [10].

Thus the primary aim of this investigation is to exam-
ine the convergence properties of the following first-order

optimization methods on a simple, yet practical example of
a fully-connected neural network: Stochastic Gradient De-
scent (SGD), Stochastic Gradient Descent with Momentum
(SGD-M), Stochastic Gradient Descent with Nesterov Mo-
mentum (SGD-NM), Root Mean Square Prop (RMSprop),
and Adam.

The fully-connected neural network, its objective func-
tion, and the first-order optimization methods used for the
convergence analysis in this study were implemented first-
hand in Python without using advanced programming li-
braries. This allows us to compare directly the implementa-
tional differences between the first-order methods and gives
us a reference for discussion.

As the objective function is implemented first-hand, it
is of critical importance to perform gradient checks, test-
ing our (analytic) gradient implementation against a correct
numerical gradient.

After applying each of the first-order methods on the
CIFAR-10 classification task, we analyze their convergence
and reason about why the results are sensible given their
defining characteristics. We use a neural network and the
CIFAR-10 dataset [11] from the University of Toronto,
which contains 60,000 images representing 10 classes.

2. Problem

We use a neural network with 3 fully-connected lay-
ers and 500 neurons per layer for the basis of this con-
vergence analysis. Although a neural network with just
1 fully-connected layer is a universal approximator i.e. it
can approximate any continuous function, shallow neural
networks with just 1 or 2 fully-connected layers are un-
common for many complex real-world applications and
hence our conclusions would be less practical [5] [16]. We
also recognize that neural networks generally have rela-
tively small performance increases after more than 3 fully-
connected layers [8] [13] [16]. Also, while more than 3
fully-connected layers may improve network performance,

1

gradient-based training becomes more difficult as deeper
networks are increasingly non-linear [17] [1] [3]. A deeper
network would simply make our convergence results more
noisy.

We use 500 neurons per layer for two key reasons. First,
it is known that the capacity of a neural network, or its abil-
ity to represent complex functional relationships, increases
with its number of layers and neurons. As we only use
3 fully-connected layers to avoid further non-linearities, a
large enough number of neurons should ensure the model
has sufficient capacity to express complex relationships [8]
[13]. 500 neurons is sufficiently large and is a good repre-
sentative of a neural network in practice. Second, designs
in which hidden layers have an equal number of neurons in
general perform as well or better than designs in which neu-
rons in layers form a different schema, e.g. a pyramid-like
schema [8] [13] [12]. In this sense as well, we have a good
example of a neural network in practice.

3. Data
We use the CIFAR-10 dataset, which consists of 60,000

32x32 pixel color images, with 6,000 images representing
each of 10 classes: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, truck [11]

Figure 1. Cifar-10 Class Images [11]

4. Methods
The first-hand Python implementations and key charac-

teristics of the first-order optimization methods Stochastic
Gradient Descent (SGD), Stochastic Gradient Descent with
Momentum (SGD-M), Stochastic Gradient Descent with
Nesterov Momentum (SGD-NM), Root Mean Square Prop
(RMSprop), and Adam are expounded here.

There exist other ways of performing neural network
optimization. For example, Limited-memory BFGS (L-
BFGS) is an optimization method in the family of quasi-

Newton methods that approximates the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm using limited com-
puter memory [14]. But gradient descent is the most es-
tablished way to optimize neural network loss functions.

4.1. SGD

Stochastic gradient descent (SGD) is named as such be-
cause the method uses randomly selected samples to eval-
uate the gradient and perform a parameter update. It can
thus be regarded as a stochastic approximation of gradient
descent optimization [18].

The true definition of SGD is to perform a parameter up-
date after approximating the gradient at just 1 example, but
it is more common to approximate the gradient with a mini-
batch, or batch, of training examples. Occasionally this is
described as Minibatch Gradient Descent or Batch Gradient
Descent, but more often the name SGD is still used.

Not only do batches provide more data for a more precise
gradient calculation, which lends smoother convergence as
the gradient is averaged over more training examples, but
SGD exhibits better performance when it can make use of
vectorization libraries as opposed to computing each step
separately [18]. When we refer to SGD in this study,
we refer to SGD with mini-batches of training examples.
Namely, we used batches of 100 training examples for the
SGD optimization.

SGD updates the parameters, or weights w of the neural
network, by subtracting the gradient dw multiplied by the
learning rate. This is to move in the negative direction of
the gradient, as the gradient gives the direction of increase
and we wish to minimize the loss function, or move in the
direction of decrease. The learning rate here is a hyperpa-
rameter that is fixed. With a small enough learning rate,
SGD is guaranteed to make non-negative progress on the
loss function [13].

Figure 2. Stochastic Gradient Descent

4.2. SGD-M

Stochastic gradient descent with momentum (SGD-M)
almost always exhibits faster convergence on deep neural
networks than SGD. The key difference compared to SGD
is the role of the gradient dw. From a physics point of view,
in SGD the gradient directly integrates the position. How-
ever, in SGD-M the gradient only influences the velocity v,
which in turn has an effect on the position. In the SGD im-
plementation, this corresponds to dw directly affecting w,
while in this SGD-M implementation dw affects v which in
turn affects w.

The parameter vector w will thus build up velocity in any
direction that has consistent gradient.

2

Figure 3. Stochastic Gradient Descent with Momentum

The velocity v is usually initialized as zeros and is stored
as a cached value that is updated each iterative parame-
ter update. The term mu is commonly referred to as mo-
mentum, but a more appropriate name might be friction
or damping. This is because the mu term, over iterations
of the algorithm, damps the velocity of gradient descent to
take smaller steps in later stages of learning, until stopping
completely. Typical values for momentum include 0.5, 0.9,
0.95, and 0.99, with 0.9 the most common [19] [13] [4].

One can implement a momentum schedule to increase
momentum in later stages of learning, similar to an anneal-
ing schedule for the learning rate, and this can increase the
rate of convergence. For a more direct comparison to other
methods, we did not implement a momentum schedule in
this study.

4.3. SGD-NM

Stochastic gradient descent with Nesterov momentum
(SGD-NM) has strong theoretical convergence guarantees
for convex functions and also consistently exhibits better
convergence than SGD-M.

First, notice from the SGD-M implementation above that
when the parameter vector is at some position w, it will be
increased by a factor mu * v, ignoring the second term in the
velocity v calculation. The core idea of Nesterov momen-
tum is that we can exploit this fact and compute the gradi-
ent at the new ”lookahead” position w + mu * v, where the
momentum step will soon take us, instead of at the current
soon-to-be-outdated position w, the position before apply-
ing a momentum step [20] [13].

This concept is expressed in Python below for concep-
tual understanding. (Our actual Python implementation of
SGD-NM follows.) Here w ahead represents the ”looka-
head” position, where the momentum step will soon take
us. Compared to SGD-M, the calculation for velocity v dif-
fers in that we use the gradient dw ahead calculated at the
”lookahead” position w ahead, instead of the gradient dw
calculated at the position w.

Figure 4. Understanding SGD-NM

Now observe our Python implementation of SGD-NM
below, which provides a direct visual comparison with
SGD-M. Upon observation, the implementations are identi-
cal, yet now we update the parameter values w not just by

adding v but by adding v + mu * (v - v prev). Accordingly,
we first store the previous velocity v prev before calculat-
ing the new velocity v.

Figure 5. Stochastic Gradient Descent with Nesterov Momentum

In this Python implementation for SGD-NM, the
w ahead position and dw ahead gradient are written short-
hand as w and dw. Crucially then, the w and dw in this
SGD-NM implementation are not equivalent to the w and
dw in the SGD-M implementation. The w and dw here are
the parameters and gradients for the ”lookahead” position
w + mu * v [20] [13].

Thus, also in contrast to SGD-M, the velocity v that we
store in the cache for SGD-NM is the ”lookahead” veloc-
ity based on the ”lookahead” gradient dw ahead (here just
named dw), and is not equivalent to the current velocity v
based on the current gradient used in SGD-M. Again, this is
despite using the same variable name v that was used in the
SGD-M implementation.

4.4. RMSprop

Interestingly, Root Mean Square Prop (RMSprop) is an
unpublished adaptive learning rate method from Geoffrey
Hinton at the University of Toronto [9]. It is based on Ada-
grad, which for understanding is shown in Python below.

The key to per-parameter adaptive learning rate methods
such as Adagrad and RMSprop is annealing the learning
rate. In neural networks, this allows gradient descent to set-
tle in deeper but more narrow areas of the loss function that
the parameter vector w may bounce over with a constant
learning rate.

The rate at which to decay the learning rate is the subject
of much research. In this study we implement RMSprop,
an advancement of Adagrad, to consider a popular adaptive
learning rate method. As RMSprop is an extension of Ada-
grad, we first consider Adagrad.

Figure 6. Adagrad

Adagrad uses beta to keep track of the per-parameter
sum of squared gradients, which is then used to normalize
element-wise the parameter w update step. The smoothing
term eps, usually set from roughly 1e-4 to 1e-8, is only to
avoid division by 0 [6].

3

In Adagrad, parameters w with large gradients dw will
have their effective learning rates decreased, while param-
eters with small gradients, i.e. sparser parameters with
sparser gradients, will have their effective learning rates
increased. Thus Adagrad often exhibits improved conver-
gence compared to various forms of SGD in settings where
data is sparse and sparse parameters are more informative,
such as in image recognition and natural language process-
ing [2] [13].

A disadvantage of Adagrad with respect to neural net-
works is that the monotonic learning rate usually proves
too aggressive, and hence learning is stopped early due
to a lack of sufficient decrease in the objective function.
Solving this problem was the motivation for the RMSprop
method, which caches under the variable name beta an
exponentially-weighted moving average of squared gradi-
ents, instead of just the sum of squared gradients used in
Adagrad.

Figure 7. RMSprop

The variable decay rate is the hyperparameter used for
annealing the learning rate, and typical values are 0.9, 0.99,
and 0.999.

A moving average of the second moments of gradients,
beta in RMSprop can be described as leaky, slowly ”forget-
ting” gradient values dw from many iterations ago. As RM-
Sprop is more sensitive to recent gradients, its learning rate
will anneal more responsively throughout the convergence
process. This in turn causes the RMSprop per-parameter
updates to gradually get smaller, thereby preventing an early
stop in learning.

Hence, RMSprop like Adagrad adjusts per-parameter
learning rates based on the magnitude of its gradients, lend-
ing an equalizing effect, but unlike Adagrad the parame-
ter updates gradually decrease to prevent stopping too early
[13] [15].

4.5. Adam

Adam, whose name is derived from adaptive moment es-
timation, exploits both the ideas of adaptive gradients and
momentum. It combines the advantages of Adagrad, which
works well with sparse gradients, and RMSprop, which
works well in on-line and non-stationary settings. It is thus
well-suited for problems with noisy and/or sparse gradients
and is also appropriate for non-stationary objectives. The
hyperparameters, although more numerous than other first-
order methods, also require little tuning [10].

Additionally, the magnitude of parameter updates is in-
variant to rescaling of the gradient, step sizes are approxi-

mately bounded by the step size hyperparameter, and it nat-
urally performs step size annealing [10].

Figure 8. Understanding Adam

Adam computes individual adaptive per-parameter
learning rates based on moving average estimates of the first
and second moments of the gradients, m and v, respectively.
Note that the update for w is identical to the RMSprop up-
date, except that m, a smoothed version of the first moment
of the gradient, is used instead of the raw and perhaps noisy
gradient vector dw [13].

The variable eps, similar to RMSProp, is included to
avoid division by 0. The variables beta1 and beta2 are de-
cay rates for moving averages of the first and second mo-
ments of the gradients, respectively. The Adam paper rec-
ommends parameter values eps = 1e-8, beta1 = 0.9, and
beta2 = 0.999 [10].

The full Adam update is shown below. It includes a bias
correction mechanism for initialization.

Figure 9. Adam

The bias correction mechanism compensates for the fact
that m and v do not convey as useful information in the
first steps after initialization. They could be for example
biased toward zero due to zero initialization. This explains
the caching of iteration t in addition to the moving averages
m and v of the first and second moments. Adam uses t in
the revised calculations for the moving averages mt and vt
to appropriately scale them over iterations of the algorithm
[10].

5. Evaluation
In this study, we performed two general kinds of evalua-

tion. We of course evaluated the convergence of the meth-
ods, but before this we used a gradient check to evaluate
whether the first-hand Python implementation of the objec-
tive function was correct.

4

5.1. Convergence Analysis

To evaluate the convergence of the methods, it is use-
ful to compare SGD, SGD-M, and SGD-NM in one plot of
the training loss over iterations. For these 3 methods, we
also show in two separate plots the training and validation
accuracies over epochs. Then we repeat the same plots and
display all 5 methods: SGD, SGD-M, SGD-NM, RMSprop,
Adam.

5.2. Gradient Checks

Now we elaborate on some guidelines for gradient
checking with neural networks. It was critical to test our
analytic gradient implementation against a numerical gradi-
ent.

In general, analytic gradients are used in practice be-
cause they are exact calculations and inexpensive to com-
pute. This is in contrast to numerical gradients, which are
simple to implement but approximate calculations and ex-
pensive to compute. Analytic implementations are more
error-prone, however, so it is common to perform gradient
checks as we did, comparing the implemented analytic gra-
dient to the numerical gradient [13] [8].

In comparing them, we use relative error:

|∇fa −∇fn|
max(|∇fa|, |∇fn|)

or the ratio of the absolute-value difference between the
analytic gradient ∇fa and numerical gradient ∇fb over the
maximum of the absolute values of both gradients. Us-
ing relative error for the comparison, as opposed to just
absolute-value difference, is necessary as the gradient could
be close to 1 or 1e-5, which would merit different error
thresholds in determining whether the absolute-value dif-
ference is acceptable. Also, normally the relative error for-
mula only includes ∇fa or ∇fb in the denominator but not
both. By performing the max operation in the denominator,
we prevent dividing by 0 which is often the case with ReLU
activation functions commonly used in neural networks and
in this study [13].

As a rule of thumb, relative errors greater than 1e-2 usu-
ally indicate the implemented analytic gradient is problem-
atic, and errors of 1e-7 or less indicate it is correct. If there
are non-differentiable kinks in the neural network objective
functions (e.g. the use of tanh nonlinearities or the Softmax
function), then a relative error of 1e-4 or less is generally ac-
ceptable. Also, as errors build up more in deeper networks
e.g. a 10-layer network, a relative error of 1e-2 or less may
be acceptable. So the depth of the network must be con-
sidered as well. These are empirical guidelines drawn from
experiments performed by various authors [8].

We also use double precision floating point calculations
and use gradient checks as a way of ensuring we are in the

active range of floating point operations [7]. We use double
precision floating point because even with correct gradient
implementations, we could have errors as high as 1e-2 using
single precision floating point, when the true error is closer
to 1e-8 [13].

To ensure we are in the active range of floating point op-
erations, during training we print the raw numerical and an-
alytic gradients and ensure these numbers are not extremely
small, in the area of 1e-10. This is often overlooked when
optimizing neural networks with gradient descent. If the
gradient values are too small, we can scale the objective
function by a constant to increase their values to a range in
which floats are more dense, ideally on the order of 1.0 in
which the float exponent is 0 [7].

Lastly, we make sure to perform gradient checks during
characteristic modes of operation, after a ”burn-in” time for
the network in which gradient values could be significantly
skewed by weight initializations [8].

6. Results
To reduce noise in the convergence graphs, a subsam-

ple of 4,000 images was used from the CIFAR-10 dataset.
Hence an epoch in these plots represents one run through
this subsampled dataset. As we run 10 epochs of training
with batch sizes of 100 samples, the plots below of the train-
ing loss are accordingly over 400 iterations of training, i.e.
400 parameter updates for each of the first-order methods.

First we show the training loss for SGD, SGD-M, and
SGD-NM over iterations of gradient descent.

Figure 10. Training Loss for SGD (blue), SGD-M (red), SGD-NM
(green) over 400 iterations

And these are the training and validation accuracies for
SGD, SGD-M, and SGD-NM over epochs.

5

Figure 11. Training Accuracy for SGD (blue), SGD-M (red),
SGD-NM (green) over 10 Epochs

Figure 12. Validation Accuracy for SGD (blue), SGD-M (red),
SGD-NM (green) over 10 Epochs

Next we can observe the training loss for SGD, SGD-M,
SGD-NM, RMSprop, and Adam over iterations of gradient
descent.

Figure 13. Training Loss for SGD (blue), SGD-M (red), SGD-NM
(green), RMSprop (purple), and Adam (orange) over 400 iterations

And these are the training and validation accuracies for
SGD, SGD-M, and SGD-NM over epochs.

Figure 14. Training Accuracy for SGD (blue), SGD-M (red),
SGD-NM (green), RMSprop (purple), and Adam (orange) over
10 Epochs

6

Figure 15. Validation Accuracy for SGD (blue), SGD-M (red),
SGD-NM (green), RMSprop (purple), and Adam (orange) over
10 Epochs

7. Discussion

As expected between SGD, SGD-M, and SGD-NM,
SGD makes the slowest progress in minimizing the objec-
tive function value, or the training loss, over iterations. And
SGD-NM exhibits improved convergence over SGD-M, as
it only improves SGD-M with the key notion that the gradi-
ent dw is computed at the ”lookahead” position of the pa-
rameters w, where the momentum step will soon take us.

Hence further confirming the literature that SGD-NM
consistently exhibits better convergence than SGD-M, we
observe SGD-NM with a lower training loss than SGD-
M after 400 training iterations and throughout most of the
training history. We can also observe a much quicker ini-
tial descent for SGD-NM, due to the relatively large steps
it takes in the early iterations of training compared to other
methods. This is because, in early compared to later iter-
ations, the gradient dw at the ”lookahead” position will be
even more different than the gradient w at the current po-
sition, leading to even larger gradient steps for SGD-NM,
relative to other methods, than for the rest of the training
process.

The training and validation accuracies of SGD, SGD-M,
and SGD-NM follow suit, with SGD having the worst train-
ing and validation accuracy and SGD-NM having the best
training and validation accuracy after 10 epochs of training.

We can also observe that RMSprop and Adam tend to
perform slightly better than SGD-NM on this specific neural
network problem, with Adam (orange) exhibiting the best
convergence, i.e. the lowest training loss, after 400 itera-
tions. We can see the training loss of the orange line falling
steadily below RMSprop (purple) and SGD-NM (green),
especially toward the later stages of training.

In general, we discussed how RMSprop and Adam pre-
vent stopping learning too early due to their adaptive learn-
ing rates. By annealing the learning rate, they can settle in
deeper but more narrow areas of the loss function that the

parameter vector w may skip over with a more aggressive
learning rate. This is exactly what we observe. In the later
stages of training, the lines of RMSProp (purple) and Adam
(orange) both appear to ”pull away” even more from SGD-
NM, until it is clear they have the least training loss with
Adam having the least.

The training and validation accuracies of RMSprop and
Adam also follow suit, with RMSProp and Adam very near
each other and definitively greater than SGD-NM. Overall
Adam reduced the training loss most, but RMSprop is an
equally viable contender for this neural network problem
and perhaps the best choice, as the validation accuracy is the
single most important metric for a machine learning model
and RMSprop had the highest validation accuracy.

Training loss over iterations is how we demonstrate con-
vergence, and training accuracy lends a helpful plot, but
validation accuracy is a stand-alone metric for determin-
ing model quality. RMSprop exhibited comparable training
loss and the best validation accuracy after 10 epochs and
throughout most of the training history, so it presents the
strongest case for the most optimal first-order optimization
method for this neural network problem.

8. Conclusion

We have presented an in-depth comparative analysis into
the Python implementation of 5 first-order optimization
methods: stochastic gradient descent (SGD), stochastic gra-
dient descent with momentum (SGD-M), stochastic gra-
dient descent with Nesterov momentum (SGD-NM), root
mean square prop (RMSprop), and Adam.

We then displayed their convergence over 10 epochs of
the training data and observed that the results confirm the
distinguishing characteristics of the first-order methods dis-
cussed in the Methods section.

Importantly, our experiments reflect the mathematical
conclusions made for convex problems about the rate of
convergence of these first-order methods.

Adam and RMSprop exhibit the best convergence and
prove to be the best first-order optimization methods for a
fully-connected neural network applied to a CIFAR-10 clas-
sification task.

References
[1] Lei Jimmy Ba and Rich Caruana. Do deep nets really need

to be deep? Neural Information Processing Systems, 2014.
https://arxiv.org/pdf/1312.6184.pdf.

[2] Amir Beck. First-Order Methods in Optimization. MOS-
SIAM Series on Optimization. MOS-SIAM, 2017. https:
//doi.org/10.1137/1.9781611974997.

[3] Yoshua Bengio. Practical recommendations for gradient-
based training of deep architectures. arXiv, September 2012.
https://arxiv.org/pdf/1206.5533v2.pdf.

7

https://arxiv.org/pdf/1312.6184.pdf
https://doi.org/10.1137/1.9781611974997
https://doi.org/10.1137/1.9781611974997
https://arxiv.org/pdf/1206.5533v2.pdf

[4] Stephen Boyd and Lieven Vandenberghe. Convex
Optimization. Cambridge University Press, 2004.
http://stanford.edu/˜boyd/cvxbook/bv_
cvxbook.pdf.

[5] G. Cybenko. Approximation by superpositions of a sig-
moidal function. Mathematics of Control, Signals, and
Systems, 1989. http://www.dartmouth.edu/˜gvc/
Cybenko_MCSS.pdf.

[6] John Duchi, Elad Hazan, and Yoram Singer. Adaptive
subgradient methods for online learning and stochastic op-
timization. Journal of Machine Learning Research, July
2011. http://www.jmlr.org/papers/volume12/
duchi11a/duchi11a.pdf.

[7] David Goldberg. What every computer scientist
should know about floating-point arithmetic. Asso-
ciation for Computing Machinery, Inc., March 1991.
https://docs.oracle.com/cd/E19957-01/
806-3568/ncg_goldberg.html.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[9] Geoffrey Hinton. Neural networks for machine learn-
ing. http://www.cs.toronto.edu/˜tijmen/
csc321/slides/lecture_slides_lec6.pdf.

[10] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations, 2015. https://arxiv.org/pdf/
1412.6980.pdf.

[11] Alex Krizhevsky. The cifar-10 dataset. https://www.
cs.toronto.edu/˜kriz/cifar.html.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. Imagenet classification with deep convolutional neural
networks. http://www.cs.toronto.edu/˜fritz/
absps/imagenet.pdf.

[13] Fei-Fei Li, Justin Johnson, and Serena Yeung. Cs 231n: Con-
volutional neural networks for visual recognition. http:
//cs231n.stanford.edu/.

[14] Limited Memory BFGS. Limited memory bfgs —
Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/Limited-memory_BFGS.

[15] Yuri Nesterov. Lectures on Convex Optimization, vol-
ume 137 of Springer Optimization and Its Applications.
Springer, 2 edition, 2003. https://link.springer.
com/book/10.1007.

[16] Michael Nielsen. A visual proof that neural
nets can compute any function, October 2018.
http://neuralnetworksanddeeplearning.
com/chap4.html.

[17] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. International Conference on Learn-
ing Representations, 2015. https://arxiv.org/pdf/
1412.6550.pdf.

[18] Stochastic Gradient Descent. Stochastic gradi-
ent descent — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/wiki/
Stochastic_gradient_descent.

[19] Lieven Vandenberghe. Ece236b - convex optimiza-
tion. http://www.seas.ucla.edu/˜vandenbe/
ee236b/ee236b.html.

[20] Lieven Vandenberghe. Ece236c - optimization methods for
large-scale systems. http://www.seas.ucla.edu/

˜vandenbe/ee236c.html.

8

http://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
https://en.wikipedia.org/wiki/Limited-memory_BFGS
https://en.wikipedia.org/wiki/Limited-memory_BFGS
https://link.springer.com/book/10.1007
https://link.springer.com/book/10.1007
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
https://arxiv.org/pdf/1412.6550.pdf
https://arxiv.org/pdf/1412.6550.pdf
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
http://www.seas.ucla.edu/~vandenbe/ee236b/ee236b.html
http://www.seas.ucla.edu/~vandenbe/ee236b/ee236b.html
http://www.seas.ucla.edu/~vandenbe/ee236c.html
http://www.seas.ucla.edu/~vandenbe/ee236c.html

