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Abstract

We perform a comparative analysis of two sampling
methods: 1) the exact sampling method using coupled
Markov chains and the Gibbs distribution proposed by
Propp and Wilson in 1996 and 2) a cluster sampling method
using the Swendsen-Wang algorithm proposed in 1987. We
sample the (2-D) Ising model of ferro-magnetism in sta-
tistical mechanics and thus briefly motivate and describe
the model. In great detail, we expound the sampling meth-
ods as a foundation for understanding the results. Namely,
after examining the coalesence times of coupled Markov
chains for exact sampling and the convergence times of
chains to their sufficient statistics for cluster sampling, it be-
came clear that cluster sampling exhibits much faster con-
vergence rates toward a desired equilibrium distribution π.

1. Introduction

Random sampling has found numerous applications in
statistics, computer science, physics, and other fields. In
this study, we sample the Ising model and compare exact
sampling using a Gibbs sampler to cluster sampling using
the Swendsen-Wang algorithm.

First, we define the model from which we sample in this
study: the 2-D Ising model. We give an explanation for
selecting it and discuss its architecture. We then proceed
to outline exact sampling with a Gibbs sampler and clus-
ter sampling with the Swendsen-Wang algorithm. Under-
standing the motivation for these sampling methods and the
problems they overcome will be crucial to understanding
the results of this study.

For exact sampling with a Gibbs sampler, we cover three
core ideas underlying the exact sampling method: the coa-
lesence of coupled Markov chains, coupling from the past,
and monotonicity. We also introduce the Gibbs sampler and

then elucidate the exact sampling method used on the Ising
model in this study.

For cluster sampling with the Swendsen-Wang algo-
rithm, we first explain the idea of cluster sampling and then
discuss the motivation for the Swendsen-Wang algorithm.
We review the structure of the algorithm and its clustering
and flipping steps in detail, after which we specifically dis-
cuss the Swendsen-Wang sampling of the Ising model in
this study.

With the key characteristics of our chosen sampling
methods expounded, we move on to our specific problem
formulation. Here we discuss the details of the experiments
we perform for both exact and cluster sampling. We discuss
the metrics used for measuring the coalesence of coupled
Markov chains in exact sampling and the convergence of
chains to their sufficient statistics in cluster sampling with
the Swendsen-Wang algorithm.

Results and analysis follow, first presenting the experi-
mental results for exact sampling and then for cluster sam-
pling. Cluster sampling proves to have less demanding sam-
pling requirements for all values of ferro-magnetic strength
β used in the Ising model.

2. Ising Model
The Ising model was invented by physicist Wilhelm

Lenz, who gave the problem to his student Ernst Ising
who solved it in his 1924 thesis. The one-dimensional
Ising model has no phase transition though, like the two-
dimensional square lattice model used in this study. Consid-
erably more difficult, the two-dimensional model was given
an analytic description much later by Lars Onsager in 1944.

The Ising model is a mathematical model of ferro-
magnetism in statistical mechanics. The model has discrete
variables representing magnetic dipole moments of atomic
spins that can be in one of two states, 1 or -1. The spins
are arranged in a graph, customarily a lattice, so that each
spin interacts with its neighbors. Well-suited for experimen-
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tal studies, the two-dimensional square lattice Ising model
is one of the simplest statistical models to observe a phase
transition [10].

To define the Ising model, let G = < V,E > be a
lattice with 4 nearest neighbor connections. Each vertex
vi ∈ V has a state variable xi with the label 0 or 1, which
is represented by the color black or white, respectively. Let
X = (x1, x2, ..., x|V |) denote the labeling of the graph.

The Ising model assigns positive energy to spins in op-
posite directions, i.e. to edges between vertices that have
dissimilar labels. Formally, the total energy of the system is
given by

H(X) = −
∑

<s,t>∈E
βstxsxt

where E represents all of the 4 nearest neighbors of the lat-
tice and β is the ferro-magnetic interaction strength.
β can be inhomogeneous but is not in this study – we use

a consistent positive β value throughout each simulation. A
value β ≥ 0 represents a system that prefers similar labels
for neighboring vertices.

Accordingly, the probability measure for each possible
state of the lattice is

π(X) =
1

Z
exp−H(X)

and thus the full Ising model can be defined as follows:

π(X) =
1

Z
exp{−

∑
<s,t>∈E

βst1(xs 6= xt)}

Notably, the distribution π is an Ising model when the
number of possible labels L = 2 and a Potts model when
L ≥ 3. We use an Ising model in this study as we have 2
labels: 0 (black) or 1 (white).

3. Exact Sampling
For high-dimensional problems, widely used random

sampling methods include Markov Chain Monte Carlo
(MCMC) methods like the Metropolis-Hastings method,
Gibbs sampling, and slice sampling. One can run an er-
godic, i.e. irreducible aperiodic, Markov chain whose sta-
tionary distribution is the desired distribution of the set.
These methods are guaranteed to produce samples from a
target density asymptotically, as long as the Markov chain
has converged to the equilibrium, or stationary, distribution
π.

Naturally, the principal concern with these methods is
how many iterations M the Markov chain should be run to
reach the stationary distribution. This can often be very dif-
ficult to determine [11]. Presenting a method that solves for

this during runtime, James Propp and David Wilson intro-
duced exact sampling with coupled Markov chains in 1996.

Propp and Wilson’s exact sampling method, also known
as perfect simulation or coupling from the past, depends on
three key ideas: coalesence of coupled Markov chains, cou-
pling from the past, and monotonicity.

3.1. Coalesence of Coupled Markov Chains

If several Markov chains start from different initial con-
ditions and share a single random-number generator, then
their trajectories in state space may coalesce and by defini-
tion not separate again. If all initializations create trajecto-
ries that coalesce into a single trajectory, then it is said the
Markov chain ”forgets” its initial condition. We refer to the
Markov chains as coupled because they share the same ran-
dom number each sweep of the sampling method and may
coalesce [11].

3.2. Coupling from the Past

The coupling from the past procedure returns an exact
sample of the equilibrium distribution π of a finite-state, er-
godic Markov chain. In principle it gives a perfect, or exact,
sample of the equilibrium distribution π [7]. The motivation
for coupling from the past comes from the realization that
sampling forward in time until coalesence occurs is defi-
cient. The state of a system at the moment coalesence oc-
curs is not guaranteed to be a valid sample of the equilib-
rium distribution.

Although couplings are key to other sampling methods,
in the exact sampling method proposed by Propp and Wil-
son the coupled chains are uniquely run from a time T0 in
the past up to the present, rather than from the present to a
time in the future. Notably, the time T0 in the past is deter-
mined during the running of the algorithm [12].

The idea that we can obtain exact samples by sampling
from the a time T0 in the past up to the present is central
to exact sampling. If coalesence occurs, the present coa-
lescent state can be output as an unbiased sample of the
equilibrium distribution. If not, one restarts the simulation
at a time T0 further into the past, reusing the same random
numbers, and prepends new random moves to the old ones.
The simulation is repeated at a sequence of ever more dis-
tant times T0, with a doubling of T0 from one run to the next
commonly serving as a convenient increment. With enough
moves prepended, coalesence will occur at a time before
the present and we can output x(0) as an exact sample of
the equilibrium distribution of the Markov chain [11].

Once T0 is found, i.e. coalesence for all the Markov
chains under review is observed given any state initializa-
tion, we can theoretically pick any earlier time and the
chains are still guaranteed to coalesce (given the same ran-
dom numbers). This is because they will ultimately pass
through the exact same state T0, and that state has already

2



been shown to lead to coalesence.
Thus, we can start from any point further into the past

than T0 and, given any initialization, we will arrive at the
same state. The next intuition, then, is wondering how use-
ful this can really be in practice. If we have to simulate
chains from any initial state, which would be infeasible for
most realistic sampling tasks, then what benefit do we re-
ceive from this MCMC method? The principal motivation
for MCMC methods is to avoid having to visit every state
of a system [11].

3.3. Monotonicity

Hence, we have established that exact samples can be
guaranteed by simulating forward from a time T0 in the
past, given that coalesence is observed for all possible
state initializations from that time. The third key compo-
nent of the exact sampling method which makes it practi-
cal, eliminating the need to test all state initializations, is
monotonicity.

The key idea is that we can assume coalesence for all
state trajectories, i.e. from any state initialization, without
actually simulating all of the trajectories. We can do this
by taking advantage of a property, often true, that there ex-
ists an implicit partial ordering of the state space. Impos-
ing partial ordering in conjunction with coupling, one can
determine whether coalesence has occurred by determining
whether it has occurred for the two state histories whose
initial states were the maximal and minimal elements of the
state space. Often, there are indeed a unique maximal and
minimal element, so only two state histories need to be sim-
ulated [8].

In our current problem of applying a Gibbs sampling
method to a ferro-magnetic Ising model, the partial ordering
of states can again be defined as

state x is ”greater than or equal to” state y if xi ≥ yi, ∀i

Thus the maximal and minimal states are the all-up (all
spins 1) and all-down (all spins -1) states. For this reason, in
our experiments we initialize an all-white chain (all labels
1) and an all-black chain (all labels 0). We only need to sim-
ulate these two state histories to derive an upper and lower
bound for the number of sweeps necessary by the Gibbs
sampler to ensure coalesence of the coupled Markov chains.
Clearly, only having to run two Markov chains creates sig-
nificant computational savings.

Summarizing, applying the principles of the coalesence
of coupled Markov chains, coupling from the past, and
monotonicity, we can ensure that after a finite number of
rounds of simulationM of just two coupled Markov chains,
our measure ρ(i) of the resulting state i will be sufficiently
close to the equilibrium distribution π(i) of the chains [5].
That is,

||ρ(i)− π(i)|| ≤ ε

And we can hence claim to obtain exact samples from the
distribution π.

3.4. Gibbs Sampler

The Gibbs sampler an MCMC algorithm for obtain-
ing samples that approximate a given multivariate distribu-
tion in cases in which direct sampling is difficult. It was
proposed by brothers Stuart and Donald Geman in 1984,
roughly eight decades after the passing of Gibbs. Gibbs dis-
tributions commonly appear in hard or soft constraint satis-
faction problems, e.g. in image denoising or in Bayesian
inference. Broadly speaking, it is considered a random-
ized alternative to deterministic algorithms for statistical in-
ference, such as the expectation-maximization (EM) algo-
rithm.

Gibbs sampling is appropriate when the joint distribution
is not known explicitly or is difficult to sample directly, but
the conditional distribution of each variable is known and
easier to sample. The Gibbs sampler generates an instance
of each variable in turn, conditional on the current value of
the other variables. The sequence of samples will consti-
tute a Markov chain, and the stationary distribution of the
Markov chain is the desired joint distribution [9].

Often the distributions are written in the Gibbs form:

π(x) =
1

Z
exp−E(x)

where x = (x1, ..., xd) ∈ Ω. The goal of the Gibbs sampler
is to sample a joint probability,

X = (x1, x2, ..., xd) ∼ π(x1, x2, ..., xd)

It samples in each dimension according to the conditional
probability,

xi ∼ π(xi|x−i) =
1

Z
exp(−E[xi|x−i]), ∀i

where π(xi|x−i) is the conditional probability at a site i
given the other sites.

We are now in position to formally define the Gibbs
sampler. Suppose Ω is d-dimensional and each dimension
is discretized into L finite states such that the total number
of states is Ld. The Gibbs sampling algorithm is as follows:

Input: Probability function π(x), current state x(t) =
(x1, ..., xd) ∈ Ω
Output: New state xt+1 ∈ Ω

1. Select a variable i ∈ {1, ..., d} at random, taking L
values y1, ..., yL

2. Compute the conditional probability vector u =
(u1, ...uL) with uk = π(xi = vk|x−i)
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3. Sample j ∼ u and set x(t+1)
−i = x(t)

−i,x
(t+1)
i = yj

The order in which the variables are selected in Step 1 above
can be random or follow a predefined schema [5].

A sweep of the Gibbs sampler entails a sequential visit
to all of the sites once. Note that although the transition
matrix Ki for one Gibbs step may not be ergodic, the total
transition matrix K = K1 ·K2 · · ·Kd is ergodic after one
complete sweep.

A well-known problem of the Gibbs sampler is that it has
difficulty sampling probability distributions with two tightly
coupled variables, or in general for more dimensions, data
that is concentrated on a lower-dimensional manifold in a
d-dimensional space. This is because to make a sweep
through all the sites, the Gibbs sampler updates different
dimensions within the state space independently. In two di-
mensions, one can visualize how this would be inefficient
if all our data, for example, were focused on a 1-D line. A
jagged update pattern forms, when clearly it would be more
efficient to make updates that move along the direction of
the line [5].

Distributions that can be difficult to sample using the
Gibbs sampler include Markov random fields and the
Ising/Potts model in particular. In this paper, the key to ob-
taining an exact sample of the Ising model using a Gibbs
sampler lies in exploiting coupling from the past, given an
implicit partial ordering of chain states [13].

3.5. Exact Sampling of Ising Model

For our current problem of sampling the Ising model, we
can take advantage of a partial ordering with unique maxi-
mal and minimal elements:

state x is ”greater than or equal to” state y if xi ≥ yi, ∀i

Thus the maximal and minimal states are the all-up (all
spins 1) and all-down (all spins -1) states. For this reason, in
our experiments we initialize an all-white chain (all labels
1) and an all-black chain (all labels 0). We only need to sim-
ulate these two state histories to derive an upper and lower
bound for the number of sweeps necessary by the Gibbs
sampler to ensure coalesence of the coupled Markov chains
[15].

Due to its high dimensionality, sampling the Ising model
is not trivial. The Gibbs sampler updates the chain based on
the conditional distribution of each particular spin of the lat-
tice, P (s/∂s), where ∂s represents the 4 nearest neighbors
of s. It is very easy to sample this distribution P (s/∂s),
and it has been demonstrated that if a deterministic or semi-
deterministic schema for updating lattice points is used, the
induced Markov chain will converge to the joint distribu-
tion for the lattice, P (I), i.e. the stationary distribution of
the Markov chain π(X) [5].

4. Cluster Sampling

In cluster sampling, a researcher divides a population
into separate groups called clusters, after which a sim-
ple random sample of clusters can be drawn for analysis.
Ideally, populations within clusters are as heterogeneous
as possible, with homogeneity between clusters. Clusters
should also be mutually exclusive and collectively exhaus-
tive. Compared to stratified sampling, cluster sampling
draws multiple clusters (but not all of them) for each sam-
ple, while stratified sampling draws random samples from
each strata for each sample.

Cluster sampling has several advantages and disadvan-
tages in comparison with simple random sampling and strat-
ified sampling. A well-known advantage is that cluster sam-
pling reduces computational costs by increasing sampling
efficiency. For example, if transitions between clusters are
computationally expensive, cluster sampling can be more
cost-effective than other methods. This is at the expense
of sampling precision, for which stratified sampling is ad-
vantageous. Given equal sample sizes, cluster sampling is
known to provide less precision than either simple random
sampling or stratified sampling [4].

Usually, cluster sampling is performed as either one-
stage or two-stage cluster sampling. In one-stage cluster
sampling, all of the elements from selected clusters are se-
lected for the sample. In two-stage cluster sampling, just
a subset of the elements from selected clusters is randomly
selected for the sample.

The Swendsen-Wang algorithm was the first non-local
or cluster algorithm for Monte Carlo simulation of large
systems near criticality. By near criticality, we mean near
a phase transition during which sampling requirements
change, usually increasing dramatically. Non-locality refers
to the property that in one sweep of the sampling method all
spin variables of the system are collectively updated [6].

4.1. Introducing Swendsen-Wang Algorithm

Introduced by Robert Swendsen and Jian-Sheng Wang in
1987, the Swendsen-Wang (SW) algorithm was initially de-
signed to address a well-known, critical slow-down in effec-
tive sampling that occurs for the Ising/Potts model. Specif-
ically, near critical temperatures in which phase transitions
occur, there is a dramatic increase in the number of samples
required to obtain valid random samples from the model [5].

The key feature of the Swendsen-Wang algorithm was
the random cluster model, introduced by Kees Fortuin and
Piet Kasteleyn in 1969. The random cluster model is a
representation of the Ising/Potts model through percolation
models of connecting bonds. The SW algorithm has since
been generalized by Adrian Barbu and Song-Chun Zhu in
2005 to arbitrary sampling probabilities. This requires inter-
preting the SW algorithm in a Metropolis-Hastings fashion
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by computing acceptance probabilities of proposed Monte
Carlo moves [14] [3].

The percolation model is defined as a set of nodes,
which is commonly organized onto a lattice structure, in
which each node has a label sampled independently from a
Bernoulli distribution. In the physics sense, a label 1 rep-
resents a pore through which liquid can percolate. During
sampling, any two adjacent nodes both assigned a label 1
are automatically connected by their edge. Hence, random
clusters of nodes can be obtained by sampling the node la-
bels and automatically connecting adjacent nodes that both
have labels 1. In this model, a large pore probability indi-
cates it is very likely a large cluster will form connecting the
left and right edges of the lattice. This is what is referred to
as percolation [5].

4.2. Swendsen-Wang Algorithm

The Swendsen-Wang algorithm introduces a set of aux-
iliary variable on the edges. Each edge e = < s, t > is
augmented with a binary variable µe ∈ {0, 1}. The set of
auxiliary variables can be denoted as

U = {µe : µe ∈ {0, 1},∀e ∈ E

An edge e is ”turned off”, i.e. disconnected, if and only if
its auxiliary variable µe = 0. µe follows a Bernoulli distri-
bution conditional on the vertex labels edge e connects, xs
and xt:

µe|(xs, xt) ∼ Bernoulli(qe1(xs = xt))

where qe = 1 − e−βst , ∀e ∈ E. Recall that β is the ferro-
magnetic strength of the system.

From this expression, we can see that µe = 1 with prob-
ability qe if xs = xt, and µe = 0 if xs 6= xt.

With this structure in mind, we can review the two steps
the SW algorithm performs each iteration: a clustering step
and a flipping step.

In the clustering step, given the current state X , the SW
algorithm samples the auxiliary variables in U according to
the expression given for µe|(xs, xt). This involves several
substeps.

First, any edge e = < s, t > with auxiliary variable µe =
0 (because its associated vertices xs 6= xt) is turned off
deterministically. After this, the full set of edges can be
expressed as

E = Eon(X) ∪ Eoff(X)

Second, the remaining ”on” edges Eon are turned off
with probability 1 − qst = exp(−βst), dividing them into
another ”on” and ”off” set depending on their respective
values for µe. As a result, the edge set Eon(X) can be fur-
ther expressed as

Eon(X) = Eon(U,X) ∪ Eoff(U,X)

The edges inEon(U,X) will form a number of connected
components in which vertices are guaranteed to have the
same label, or color. We denote the set of connected com-
ponents in Eon(U,X) by

CP(U,X) = {cpi : i = 1, 2, ...,K,with ∪Ki=1 cpi = V }

In the flipping step, the SW algorithm randomly selects
one connected component Vo ∈ CP and assigns a common
color, or label l, to all vertices, or sites s, in V0. The new
label l follows a discrete uniform distribution

xs = l, ∀s ∈ Vo

where l ∼ uniform{1, 2, ..., L}. Note, however, that there
are only two labels 0 and 1 in this study, so more accurately
l ∼ uniform{0, 1}.

As the set of connected components CP(U,X) is decou-
pled, one may perform color assignments for some or all of
the connected components independently. By making inde-
pendent updates amongst all the connected components in
one sweep, we can draw an analogy with Gibbs sampling.
In Gibbs sampling, updates for all the sites, or dimensions,
are also made independently in just one sweep of the algo-
rithm [5] [1].

4.3. Swendsen-Wang Sampling of Ising Model

For various values of β, we can observe consecutive
samples of the Ising model obtained by the SW algorithm
for an example lattice 256x256:

Figure 1. Consecutive samples of Ising model by SW algorithm
for different β values. From top to bottom, β = 0.1, 0.8, 0.9, 1 [5].
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For small values of β such as 0.1, the SW samples not
only appear random, but relatedly, consecutive samples are
almost indistinguishable from each other. It reminds us of a
television signal after losing connection to a satellite.

For larger values of β such as 1, most vertices within the
samples have the same label. And consecutive samples al-
ternate in predominant label, white or black, reflective of
the stronger ferro-magnetism strength β. (A larger β corre-
sponds to a system that more strongly prefers similar labels
for neighboring vertices.)

Very interestingly, we can also observe a phase transi-
tion in the above SW samples. In between 0.8 and 0.9,
there is a value β, commonly denoted β0, that corresponds
to a phase transition. We can observe a relatively dramatic
change, from a random phase to a solid unicolor phase, in
the samples returned between these two values. In physics,
the value 1

β0
is referred to as the critical temperature [5].

5. Problem Statement
In this study we sample a 2-D Ising model using two

sampling methods: exact sampling with coupled Markov
chains and the Gibbs distribution and cluster sampling with
the Swendsen-Wang algorithm. We compare coalescence
times of coupled Markov chains using exact sampling to
convergence times to sufficient statistics using cluster sam-
pling.

We use an Ising model in a 64x64 lattice in which every
site has 4 nearest neighbors. We define a state X as the
current binary image on the lattice and the variable Xs as
a binary value 0 or 1 at a particular pixel, or site s, of the
image. The Ising model is again defined as such:

π(X) =
1

Z
exp{−

∑
<s,t>∈E

βst1(xs 6= xt)}

For both exact and cluster sampling, multiple values of
β are used to observe how it influences either coalesence
times in exact sampling or convergence times in cluster
sampling.

5.1. Exact Sampling

We simulate two coupled Markov chains with the Gibbs
sampler. The first chain, whose state is denoted as X1, is
initialized with all sites equal to 1. The second chain, whose
state is denoted asX2, is initialized with all sites equal to 0.

Given this initialization schema, we call the first chain
the white chain and the second the black chain. This paral-
lels the convention for RGB pixel values, in which white is
encoded as (255, 255, 255) and black as (0, 0, 0).

At each step the Gibbs sampler picks up a site s from
both states X1 and X2 and calculates their respective con-
ditional probabilities, which are only dependent on their re-
spective 4 nearest neighbors. If we denote a set of 4 nearest

neighbor sites as ∂s, then the 2 conditional probabilities cal-
culated at each step can be denoted as:

π(X1
s |X1

∂s) and π(X2
s |X2

∂s)

The Gibbs sampler at each step updates the statesX1
s and

X2
s according to these two conditional probabilities, using

the same random number in [0,1] for both update opera-
tions. Under this process the two Markov chains are said to
be coupled [5].

5.2. Exact Sampling Coalesence

The statistic of interest is the coalesence time τ : the
number of sweeps necessary for the Markov chains X1 and
X2 to converge to a similar value for the cumulative sum of
their respective states. By this time τ , the states X1 and X2

are said to represent exact samples from the Ising model.
The two chain states will simply remain constant, repeat-
edly determined by the same random number r ∈ [0, 1] each
step.

To evaluate coalesence times, we plot the cumulative
sums denoted below of the respective Markov chain states
over sweeps of the sampling method.

ΣsX
1
s and ΣsX

2
s

These sums are the total magnetization at any state of the
Ising model for given values of β. We will additionally dis-
play an image of the state X when the two chains coalesce.

For varying values of β = [0.5, 0.6, 0.7, 0.8, 0.83, 0.84,
0.85, 0.9] used in the Ising model, we observe plots of
τ over β. We will note that once β is increased to a
certain value 0.84, there is a phase transition, causing a
dramatic slow-down in effective sampling, requiring many
more samples to get an accurate random sample of the dis-
tribution [5].

5.3. Cluster Sampling

For the two Markov chains simulated with cluster sam-
pling, the first chain with stateX1 is initialized as a constant
black or white image, i.e. with all sites equal to 0 or 1, re-
spectively. The second chain with state X2 is initialized
as a checkerboard image, forming an alternating pattern of
black and white sites with respect to the rows and columns
of the lattice.

Accordingly, the first chain has the property h = 0, as
it is entirely homogeneous with respect to site values. As
all site values are equal, we say there are no cracks. Con-
versely, the second chain initialized as a checkerboard has
the property h = 1, indicating it possesses the maximal
amount of cracks, i.e. it has maximum entropy.

Convergence with cluster sampling is determined by
whether H(X), the sufficient statistics of X , converges to
a constant value h over time. The underlying idea from

6



physics is that as long as a lattice nxn is large enough, the
probability mass of π(x) concentrates around some set uni-
formly, having zero probability outside of the set. We can
denote this set as Ω(h):

Ω(h) = {X : H(X) = h}
The sufficient statisticsH(X) measures the length of the

total boundaries, or cracks, in X and is normalized by the
number of edges. H(X) is formally defined as

H(X) =
1

2n2

∑
<s,t>

1(Xs 6= Xt)

We consider two images X1 and X2 to have the same prob-
ability distribution if their sufficient statistics are equal:
H(X1) = H(X2).

Theoretically, in the absence of a phase transition, there
is a one-to-one correspondence between β (in the Ising
model) and h, i.e. h = h(β). Thus, again we can empir-
ically diagnose convergence by monitoring whether H(X)
converges to a specified constant h over time [5].

5.4. Cluster Sampling Convergence

To evaluate convergence to a sufficient statistic using
cluster sampling, we use three values of β in the Ising
model: 0.6, 0.8, and 0.84. This lends three images X1,
X2, and X3 for the lattice states at the respective conver-
gence times t1, t2, and t3, corresponding to the three differ-
ent values of β. As we used all three β values for the exact
sampling experiment as well, we will be able to make direct
comparisons.

From these images X1, X2, and X3 we compute their
respective sufficient statistics h∗1, h∗2, and h∗3. These suffi-
cient statistics give the value at which the coupled Markov
chains meet. When the two chains meet at h∗i , one initial-
ized as a constant black or white image and the other as a
checkerboard image, we will believe they have converged
to Ω(h∗i ).

Hence for cluster sampling, we plot the sufficient statis-
tics H(X) of the current state that we denote as X(t) over
the time, or sweeps, t. Convergence, and a stopping of the
sampling method, is determined by h approximating within
a certain distance ε the sufficient statistic h∗i . We set ε to be
0.001.

We compare the cluster sampling convergence times for
β = [0.6, 0.8, 0.84] to the exact sampling method using the
Gibbs sampler. Note that this comparison may be slightly
unfair to the Gibbs sampler, as it is possible it converges to
some sufficient statistics Ω(h∗i ) before coalesence in some
cases [5].

Lastly, we will plot the average sizes of the connected
components (CP), or the number of pixels flipped together
at each sweep, for each of the three values of β: β1, β2, and
β3.

6. Results and Analysis

We first observe results for exact sampling with coupled
Markov chains and the Gibbs sampler, and then observe re-
sults for cluster sampling using the Swendsen-Wang algo-
rithm.

6.1. Exact Sampling

For each of the values of ferro-magnetic strength β =
[0.5, 0.6, 0.7, 0.8, 0.83, 0.84, 0.85, 0.9] used in the Ising
model, we display two figures: a plot of the coalesence of
the coupled Markov chains and a sample of the Ising model
at coalesence. At coalesence or after, the image samples are
said to be exact samples from the Ising model.

The plots of coalesence have on the y-axis the total mag-
netization

∑
sXs of the Ising model and on the x-axis the

number of sweeps τ of the sampling method. Recall that
the total magnetization

∑
sXs is the cumulative sum of the

states Xs of a Markov chain over sweeps. We expect the
respective total magnetizations for coupled Markov chains
to converge in value, causing the chains to ultimately move
in a nearly identical fashion, signifying coalesence.

To be concrete, when two chains meet each other such
that X1

s = X2
s , ∀s after many sweeps, they have coalesced.

They then remain in the same state permanently, as due to
the nature of the Gibbs sampler, the chains are determined
by the same random number r ∈ [0, 1] at each step.

As a last note for the plots, as the white chain X1 was
initialized with all sites equal to 1, and the black chain X2

was initialized with all sites equal to 0, it can be shown by
induction that X1

s ≥ X2
s , ∀s in any step of the sampling

method. Accordingly, we label the white chain as the up-
per bound and black chain as the lower bound for the sum
of an image

∑
sXs for a given sweep, or iteration, of the

sampling method [5].

6.2. Coalescence and Samples

For β = 0.5, we display below the coalesence of the
white and black coupled Markov chains. They coalesce at
τ = 25 sweeps of the exact Gibbs sampling method.

This smallest value of β = 0.5 lends the smallest coa-
lesence time τ = 25 observed. This is intuitive, as smaller
values of beta promote clustering less, which in turn causes
the image sums of the coupled chains to converge fastest to
a similar value.

To expound, recall larger values of β ∈ [0, 1] configure
Ising models to more strongly promote clustering, i.e. pre-
fer similar labels for neighboring vertices. And recall the
coupled Markov chains are initialized as white and black
images, with image sums of 4096 and 0 respectively (as we
use 64x64 lattices labels 1 and 0). The smallest value of β
hence lends a model that, due to promoting clustering the
least, allows the sites of the two images, at first entirely 0
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or 1, to more frequently make color updates. This in turn
causes the image sums to coalesce more quickly and reach
a similar value in between 0 and 496. Simply put, the chains
can more quickly meet each other in the middle due to less
of an influence of the ferro-magnetic strength β.

The weaker preference for clustering is reflected in the
Ising model sample drawn at coalesence, which displays
less clustering of the white and black sites than the samples
for other values of β.

Hence, the coupled chains for β = 0.5 most quickly
reach a similar value for their respective total magnetiza-
tions, i.e. the sum of their respective images, due to a
weaker preference for clustering which in turn causes a
quicker convergence of the image sums.

Below we display a sample of the Ising model at coales-
ence for β = 0.5 and τ = 25. Note this sample displays the
least clustering of the white and black sites of any in this
study, reflective of the smallest β value used for this study.

Figure 2. Ising model sample for β = 0.5, τ = 25

For β = 0.6, we display the coalesence of the white and
black coupled Markov chains. They coalesce at τ = 53
sweeps of the exact Gibbs sampling method.

Figure 3. Coalesence at τ = 53 sweeps for β = 0.6

Below we display a sample of the Ising model at coales-
ence for β = 0.6 and τ = 53.

Figure 4. Ising model sample for β = 0.6, τ = 53

For β = 0.7, we display the coalesence of the white and
black coupled Markov chains. They coalesce at τ = 69
sweeps of the exact Gibbs sampling method.
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Figure 5. Coalesence at τ = 69 sweeps for β = 0.7

Increasing β from 0.5 to 0.7 has so far not caused any
dramatic increases in the number of sweeps necessary for
the coupled chains to coalesce.

Below we display a sample of the Ising model at coales-
ence for β = 0.7 and τ = 69. Now how the samples, as
values of β increase, become increasingly clustered.

The larger ferro-magnetism strength β at this point is
still just gradually encouraging more neighboring vertices
to have similar labels.

Figure 6. Ising model sample for β = 0.7, τ = 69

For β = 0.8, we display the coalesence of the white and
black coupled Markov chains. They coalesce at τ = 458
sweeps of the exact Gibbs sampling method.

Figure 7. Coalesence at τ = 458 sweeps for β = 0.8

Increasing β from 0.7 to 0.8 caused a larger relative in-
crease in the number of sweeps necessary for coalesence, as
compared to the transition from 0.6 to 0.7.

Below we display a sample of the Ising model at coales-
ence for β = 0.8 and τ = 458.

Figure 8. Ising model sample for β = 0.8, τ = 458

For β = 0.83, we display the coalesence of the white and
black coupled Markov chains. They coalesce at τ = 372
sweeps of the exact Gibbs sampling method.
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Figure 9. Coalesence at τ = 372 sweeps for β = 0.83

Below we display a sample of the Ising model at coales-
ence for β = 0.83 and τ = 372.

Note the number of sweeps necessary for coalesence is
slightly lower here for β = 0.83 as opposed to β = 0.8, but
this is merely due to random chance. The Gibbs sampler
uses a (shared) random number in [0,1] for each sweep in
which it updates the states X1 and X2. On most runs of
the exact Gibbs sampler through the increasing β values,
the number of sweeps necessary for coalesence increased
monotonically.

Figure 10. Ising model sample for β = 0.83, τ = 372

For β = 0.84, we display the coalesence of the white and
black coupled Markov chains. They coalesce at τ = 887
sweeps of the exact Gibbs sampling method.

Figure 11. Coalesence at τ = 887 sweeps for β = 0.84

Increasing β from 0.83 to 0.84, a seemingly small tran-
sition, caused a roughly 2.5x increase in the number of
sweeps necessary for coalesence. Roughly at this value
of β = 0.84, the Ising model undergoes a phase transi-
tion. The sampling demands have increased greatly for just
a small increase in the ferro-magnetism strength β.

Below we display a sample of the Ising model at coales-
ence for β = 0.84 and τ = 887.

Figure 12. Ising model sample for β = 0.84, τ = 887

For β = 0.85, we display the coalesence of the white and
black coupled Markov chains. They coalesce at τ = 883
sweeps of the exact Gibbs sampling method.
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Figure 13. Coalesence at τ = 883 sweeps for β = 0.85

By chance, this value τ = 883 sweeps is close to
the value of τ = 887 sweeps for the previous value of
β = 0.84. We can still be confident the system undergoes a
clear phase transition by observing the number of sweeps τ
necessary for β = 0.9, next.

Below we display a sample of the Ising model at coales-
ence for β = 0.85 and τ = 883.

Figure 14. Ising model sample for β = 0.85, τ = 883

For β = 0.9, we display the coalesence of the white and
black coupled Markov chains. They coalesce at τ = 15330
sweeps of the exact Gibbs sampling method.

Figure 15. Coalesence at τ = 15330 sweeps for β = 0.9

This is a very large number of sweeps required for co-
alesence compared to any previous β value and confirms
the Ising model undergoes a phase transition before this
β = 0.9 value.

Below we display a sample of the Ising model at coales-
ence for β = 0.9 and τ = 15330.

Figure 16. Ising model sample for β = 0.9, τ = 15330

Lastly, we display a plot of the coalesence times τ for
each of the values of β = [0.5, 0.6, 0.7, 0.8, 0.83, 0.84, 0.85,
0.9] used in the Ising model.
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Figure 17. Coalesence times tau for beta values

This final plot of τ over β shows that at about β = 0.85,
a phase transition occurs which causes a critical slow-down
in the sweeps required for coalesence. In effect, many more
sweeps of the Gibbs sampler will be necessary for β values
larger than 0.85 to ensure we have accurate random samples
of the distribution.

6.3. Cluster Sampling

Recall that for cluster sampling we use a different initial-
ization. The first Markov chain with state X1 is initialized
as a constant black or white image, and the second chain
with state X2 is initialized as a checkerboard image.

Convergence with cluster sampling is determined by
whether H(X), the sufficient statistics of X that measures
the length of total boundaries (or cracks), converges to a
constant value h over time.

We use the following values of β in the Ising model for
cluster sampling: 0.6, 0.8, and 0.84. These lend three im-
ages X1, X2, and X3 for the lattice states at the respective
coalesence times t1, t2, and t3. As we used these same val-
ues of β for exact sampling, we will be able make a direct
comparison.

From these imagesX1,X2, andX3 corresponding to the
different β values, we compute their respective sufficient
statistics h∗1, h∗2, and h∗3. These are equal to 0.3194, 0.2231,
and 0.1966, respectively.

These sufficient statistics give the value at which the
Markov chains meet. Again, when the two chains meet at
h∗i , one initialized as a constant black or white image and
the other as a checkerboard image, we believe they have
converged to Ω(h∗i ).

6.4. Convergence using Sufficient Statistics

We first plot the sufficient statistics H(X) of the current
state X(t) over time, or sweeps, t. Recall that convergence,

and a stopping of the sampling method, is determined by
h approximating within a certain distance ε the sufficient
statistic h∗i . We again set ε = 0.001.

Below we plot the sufficient statisticsH(X) over sweeps
for β = 0.6. We do this for both initializations, the constant
image and checkerboard image. We placed red markers for
the times at which the Markov chains converge to the suffi-
cient statistic h∗1 = 0.3194 given this beta value.

Figure 18. Constant and checkerboard images converge in 18 and 5
sweeps respectively to sufficient statistic h∗

1 = 0.3194 for β = 0.6

Note the much faster convergence compared to the exact
sampling method, which required τ = 53 sweeps for the
coupled Markov chains to coalesce given β = 0.6.

Also note how the constant (white or black) image re-
quires more sweeps to converge, as confirmed by all the
following plots as well. This is intuitive, as the constant
image should exhibit a greater mixing time to reach the
equilibrium distribution than a checkerboard image. As
the checkerboard image is initialized in a maximally mixed
fashion (equal white and black sites), it should display faster
convergence for most equilibrium distributions.

Below we plot the sufficient statisticsH(X) over sweeps
for β = 0.8. We do this for both initializations, the constant
image and checkerboard image. We placed red markers for
the times at which the Markov chains converge to the suffi-
cient statistic h∗2 = 0.2231 given this beta value.
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Figure 19. Constant and checkerboard images converge in 20 and 8
sweeps respectively to sufficient statistic h∗

2 = 0.2231 for β = 0.8

Similar to the results seen with exact sampling, notice
how a larger value of β increases the sweeps τ required for
convergence. This is to be expected, as an increase in the
ferro-magnetism strength β more strongly configures neigh-
boring vertices to have similar labels, encouraging cluster-
ing and slowing the mixing time of the chains.

Lastly, we plot the sufficient statistics H(X) over
sweeps for β = 0.84. We do this for both initializations,
the constant image and checkerboard image. We placed red
markers for the times at which the Markov chains converged
to the sufficient statistic h∗3 = 0.1966 given this beta value.

Figure 20. Constant and checkerboard images converge in 33 and
8 sweeps respectively to sufficient statistic h∗

3 = 0.1966 for β =
0.84

This is the value of β = 0.84 for which we previously
observed a phase transition using the Gibbs sampler to per-
form exact sampling. Note that in cluster sampling, the

number of sweeps required for convergence does not dra-
matically increase around this value of β = 0.84.

6.5. Comparison with Exact Sampling

Now we can compare the exact sampling coalesence
times for the three values of β = [0.6, 0.8, 0.84] to the con-
vergence times found for cluster sampling with SW.

Using the Gibbs sampler for exact sampling, the Markov
chains coalesced in 53, 458, and 887 sweeps for the three
values of β, respectively. For cluster sampling, the slowest
convergence times for each β value were for the constant
image: 18, 20, and 33 sweeps. Overall, we can see that clus-
ter sampling gives much faster convergence rates than does
the exact sampling method with coupled Markov chains.

Note, however, that this comparison is slightly unfair to
the Gibbs sampler, as it is possible that either or both of the
coupled Markov chains in the exact sampling experiments
converge to the respective sufficient statistic Ω(h∗i ) before
coalesence [5]. Coalesence displayed by coupled Markov
chains and convergence to a sufficient statistic are two dif-
ferent ways to confirm one is sampling from an equilibrium
distribution π. In any case, because the disparity is so large,
it is safe to assume that cluster sampling does indeed pro-
vide faster convergence rates than exact sampling with cou-
pled Markov chains.

6.6. Average Connected Component

Lastly, we also plot the average sizes of the connected
components (CP), or the number of pixels flipped together
at each sweep, for each of the three values β = 0.6, 0.8, and
0.84.

Figure 21. Connected component (CP) sizes for β = 0.6, 0.8, and
0.84

The outstanding observation is that as β increases from
0.6 to 0.84, the average CP size also increases. This is intu-
itive, as we know that a stronger ferro-magnetic strength β
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more strongly promotes neighboring vertices to have simi-
lar labels and hence it promotes clustering. With larger clus-
ters on average, the average CP size, or the average number
of pixels flipped together at each sweep, will certainly be
larger.

It also seems that larger values of β correspond to greater
variation in average CP sizes. The value β = 0.84 caused
the most variation and the largest number of sweeps neces-
sary for the constant and checkerboard images to converge
to roughly the same CP size per sweep. This is also rea-
sonable, as stronger β values promote stronger clustering,
which promotes the formation of more and larger clusters,
which in turn produces greater variation in cluster sizes.

7. Future Work

The Swendsen-Wang clustering method is limited in two
ways we have not mentioned. First, it is only valid for the
Ising and Potts models. Second, it requires that the number
of labels, or colors, L be known. In applications such as
image analysis, L may represent the number of objects (or
image regions) that have to be inferred from input data.

Hence for future work, we would like to explore Data
Driven Markov Chain Monte Carlo (DDMCMC) meth-
ods, which do not require that the number of labels L be
known. Utilizing a Bayesian statistical framework, DDM-
CMC methods perform image segmentation and hence la-
beling in a purely data-driven manner [2].

8. Conclusion

We have carried out a full implementation and compara-
tive analysis of exact sampling with coupled Markov chains
proposed by Propp and Wilson and cluster sampling with
the Swendsen-Wang algorithm. Understanding the motiva-
tion behind the methods, their use-cases, their weaknesses,
and other key qualities helped us to differentiate and fur-
ther characterize these methods. Cluster sampling with the
Swendsen-Wang algorithm proved certainly that it is a su-
perior method for sampling the 2-D Ising model with regard
to computational expense.
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